Tìm một số có 2 chữ số biết rằng bình phương nó lên thì sẽ được một số có 2 chữ số tận cùng chính là 2 chữ số của số đó.
(Nói cách khác cho dễ hiểu: ab2 = ...ab)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số phải tim là Aab
ta có A = k^2 suy ra 100 A =(10k)^2 (1)
Aab=q^2 (2)
Lấy (2) - (1) ta có:
ab = q^2 - (10k)^2 = (q - 10k)(q + 10k)
Nhận xét: Nếu đặt (q - 10k) = m
thì (q + 10k) = m +20k
Do đó ab = m(m+20k)
Dùng chặn sẽ ra
mk ko bt có đúng ko đâu
Gọi số phải tìm là a^2. Sau khi xóa ta đc b^2.
theo đầu bài ta xóa 2 CS cuối nghĩa là a^2 = 100* b^2 + D ( trong đó D là một số có 2 CS)
<=> a^2 - 100*b^2 = D
<=> (a-10b)(a+10b) = D
Ta có vài nhận xét sau:
1) a^2 phải có ít nhất 3CS ( để còn xóa đc 2CS cuối^^)
2)a-10b>0
3) a+10b <100
Suy ra
b chỉ có thể bằng 1,2,3,4
( nếu b=5 thì đồng thời a>50 và a<50
b=6 thì đồng thời a>60 và a<40....
làm gì có )
TH1: b=4
=> a có dạng 16xx && 40<a<60
=> 1600<a^2<3600
=> chỉ có số 1681=41^2 thỏa mãn
TH2: b=3
=> a có dạng 9xx && 30<a<70
=> 900<a^2<4900
=>chỉ có 31^2 = 961 thỏa mãn
TH3: b=2
=>...thật ra không cần phải xét vì đầu bài yêu càu tìm sồ lớn nhất thôi. Các số trong các TH dưới đều có 3CS. Chỉ có TH 1 có 4CS
Nên: Số lớn nhất cần tìm là 1681
a52 = ...a5 =>a=2