K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 1

a.

\(f\left(x\right)=0\) có nghiệm \(x=1\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1-2\left(m-2\right)+m+10=0\)

\(\Rightarrow m=15\)

Khi đó nghiệm còn lại là: \(x_2=\dfrac{m+10}{x_1}=\dfrac{25}{1}=25\)

b.

Pt có nghiệm kép khi: \(\Delta'=\left(m-2\right)^2-\left(m+10\right)=0\)

\(\Rightarrow m^2-5m-6=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=6\end{matrix}\right.\)

Với \(m=-1\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=-3\)

Với \(m=6\) nghiệm kép là: \(x=-\dfrac{b}{2a}=m-2=4\)

c.

Pt có 2 nghiệm âm pb khi:

\(\left\{{}\begin{matrix}\Delta'=m^2-5m-6>0\\x_1+x_2=2\left(m-2\right)< 0\\x_1x_2=m+10>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>6\end{matrix}\right.\\m< 2\\m>-10\end{matrix}\right.\) \(\Rightarrow-10< m< -1\)

d.

\(f\left(x\right)< 0;\forall x\in R\Rightarrow\left\{{}\begin{matrix}a=1< 0\left(\text{vô lý}\right)\\\Delta'=m^2-5m-6< 0\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

21 tháng 1

e cảm ơn ạ

28 tháng 5 2017

8 tháng 10 2017

Đặt t = f ( f ( x ) - 1 ) - 2  phương trình trở thành: 

f ( t ) = 1 ⇔ t 4 - 4 t 2 + 1 = 1 ⇔ t = 0 ; t = ± 2

TH1: Nếu

t = 0 ⇔ f ( f ( x ) - 1 ) - 2 = 0 ⇔ f ( f ( x ) - 1 ) = 2

Đặt a=f(x)-1 phương trình trở thành:

f ( a ) = 2 ⇔ a 4 - 4 a 2 - 1 = 0 ⇔ a = ± 2 + 5

Nhận xét: Xét hàm số y = f ( x ) - 1 = x 4 - 4 x 2  có  y c d = y ( 0 ) = 0 ; y c t = y ± 2 = - 4

Với a ∈ - 4 ; 0  phương trình y = a có bốn nghiệm thực phân biệt. Với a = 0 phương trình y = a có hai nghiệm thực phân biệt. Với a < -4 phương trình y = a vô nghiệm.

Áp dụng cho trường này có 2 + 4 = 6 nghiệm.

TH2: Nếu

t = - 2 ⇔ f ( f ( x ) - 1 ) - 2 = - 2 ⇔ f ( f ( x ) - 1 ) = 0

Đặt a=f(x)-1 phương trình trở thành:

f ( a ) = 0 ⇔ a 4 - 4 a 2 + 1 = 0 ⇔ a = ± 2 + 3

Trường hợp này có 2 + 2 + 4 + 4 = 12 nghiệm.

TH3: Nếu t = 2 ↔ f ( f ( x ) - 1 ) = 4  Đặt a=f(x)-1 phương trình trở thành:

f ( a ) = 4 ⇔ a 4 - a = ± 4 a 2 - 3 = 0 ⇔ a = ± 2 + 7

Trường hợp này có 2 + 4 = 6 nghiệm.

Vậy phương trình đã cho có tất cả 24 nghiệm thực phân biệt.

Chọn đáp án A.