Với giá trị nào của x thì biểu thức
\(E=\frac{1}{3,5-|x+5|}\) đạt giá trị dương nhỏ nhất ? Tìm giá trị nhỏ nhất ấy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-|x+5|<=0 với mọi x
=>3,5-|x+5|<=3,5
=>E>=1/3,5=1:7/2=2/7
dấu "=" xảy ra khi và chỉ khi x+5=0
=>x=-5
vậy GTNN của E=2/7 tại x=-5
|x + 5| > 0
- |x + 5| < 0
3,5 - |x + 5| < 3,5
\(A=\frac{1}{3,5-\left|x+5\right|}\ge\frac{1}{3,5}=\frac{2}{7}\)
\(\Rightarrow A_{min}=\frac{2}{7}\Leftrightarrow x=-5\)
ta có với mọi x: /x+5/ lớn hơn hoặc bằng 0
suy ra ; -/x+5/ bé hơn hoặc bằng 0
suy ra ; 3.5-/x+5/ bé hơn hoặc bằng 3.5 =15
suy ra 1/ 15-/x+5/ lớn hơn hoặc bằng 1/15
Dấu bằng xảy ra khi và chỉ khi /x+5/=0
suy ra x=-5
vậy E min =1/15 khi và chỉ khi x=-5
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi
Vì \(-|x+5|\le0;\forall x\)
\(\Rightarrow3,5-|x+5|\le3,5-0;\forall x\)
\(\Rightarrow\frac{1}{3,5-|x+5|}\ge\frac{1}{3,5};\forall x\)
Hay \(E\ge\frac{1}{3,5};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|x+5|=0\)
\(\Leftrightarrow x=-5\)
Vậy MIN \(E=\frac{1}{3,5}\Leftrightarrow x=-5\)