Chứng tỏ rằng UCLN(a,b)=UCLN (95a+3b,13a+8b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(UCLN\left(13a+8b,5a+3b\right)=d\) \(\left(d\ge1\right)\)
Ta có \(\hept{\begin{cases}13a+8b⋮d\\5a+3b⋮d\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(13a+8b\right)\times2⋮d\\\left(5a+3b\right)\times5⋮d\end{cases}}\) \(\Leftrightarrow\left(26a+16b\right)-\left(25a+15b\right)⋮d\)
\(\Leftrightarrow\)\(\left(a+b\right)⋮d\)
Từ đó suy ra đpcm.
đặt A=5a+3b B=13a+8b
vì a,b thuộc N và 5a+3b chia hết 2012
=>:13A= 13(5a+3b)=65a+39b chia hết cho 2012 (1) và 13a+8b chia hết 2012 => 5B=5(13a+8b)=65a+40b chia hết cho 2012 (2)
Từ (1) và (2) => [65a+40b - (65a + 39b)] chia hết 2012
<=> 65a+40b - 65a - 39b chia hết cho 2012
<=> b chia hết cho 12
=> 3b chia hết cho 2012 mà 5a +3b chia hết cho 2012
=> 5a chia hết cho 2012 mà UCLN(5,2012)=1
=> a chia hết cho 2012
Vậy a,b thuộc N 5a+3b và 13a+8b chia hết cho 2012 thì a và b cũng chia hết cho 2012