Cho tam giác ABC có hai đg phân giác BD và CE cắt nhau ở I. Giả sử góc ABC = 60 độ, góc ACB = 40 độ. Tính góc CID
Giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì BI là tia phân giác của ^ABC => ^ ABI = ^ IBC= ^ ABC / 2 = 80 / 2 =40
=>^IBC=40
vì CI là tia phân giác của ^ACB => ^ACI = ^ ICB = ACB / 2 = 40 / 2 = 20
=>^ICB = 20
Ta có : ^BIC+^IBC+^ICB= 180 ( tổng ba góc của 1 tam giác )
=> ^BIC +40+20 =180
=>^BIC = 120
Trong tam giác ABC có : ABC + ACB + BAC = 180 => ABC + ACB = 120
mà BD , CE lần lượt là phân giác của ABC , ACB => 2IBC + 2ICB = 120 <=> IBC + ICB = 60
Có : DIE+DIC = 180 ( kề bù ) mà DIC = IBC + ICB = 60 ( góc ngoài của tam giác IBC )
=> DIE = 120 và DIE + BAC = 180 => AEID nội tiếp
Bn tự vẽ hình nha
Ta có:\(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)
mà\(\widehat{ABD}=\widehat{DBC}\)(BD là đg phân giác của\(\widehat{ABC}\))
\(\Rightarrow\widehat{ABD}=\widehat{DBC}=\frac{\widehat{ABC}}{2}=\frac{60^o}{2}=30^o\)
\(\widehat{ACE}+\widehat{ECB}=\widehat{ACB}\)
mà\(\widehat{ACE}=\widehat{ECB}\)(AC là đg phân giác của\(\widehat{ACB}\))
\(\Rightarrow\widehat{ACE}=\widehat{ECB}=\frac{\widehat{ACB}}{2}=\frac{40^o}{2}=20^o\)
Xét\(\Delta BIC\)có:\(\widehat{IBC}+\widehat{BIC}+\widehat{ICB}=180^o\)(ĐL tổng 3 góc của 1\(\Delta\))
hay\(30^o+\widehat{BIC}+20^o=180^o\)
\(\Rightarrow\widehat{BIC}=180^o-30^o-20^o=130^o\)
Ta lại có:\(\widehat{BIC}+\widehat{CID}=180^o\)(2 góc kề bù)
hay\(130^o+\widehat{CID}=180^o\)
\(\Rightarrow\widehat{CID}=180^o-130^o=50^o\)