K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

\(\sqrt{4+x^2}+\sqrt{4-x^2}=2\sqrt{2}\)

<=> \(\left(\sqrt{4+x^2}+\sqrt{4-x^2}\right)^2=\left(2\sqrt{2}\right)^2\)

<=> \(4+x^2+2\)\(\sqrt{\left(4+x^2\right)\left(4-x^2\right)}\) \(+4-x^2\) \(=8\)

<=> \(8+2\sqrt{4^2-\left(x^2\right)^2}\) \(=8\)

<=> \(2\sqrt{16-x^4}\) \(=0\)

<=> \(\sqrt{16-x^4=0}\)

<=> \(16-x^4=0\)

<=> \(x^4=16\)

<=> \(x=2;-2\)

3 tháng 9 2019

Trần Ngọc Thảo mình thiếu cái ĐKXĐ là -2 \(\le\) x \(\le\) 2 nha!

7 tháng 9 2019

X=7,3267

7 tháng 9 2019

@Thư Kỳ giải chi tiết hộ mk đi

12 tháng 9 2019

ĐK: \(x\ge\frac{1}{2}\)

Đặt \(t=\sqrt{2x-1}\Leftrightarrow x=\frac{t^2+1}{2}\)(ĐK: \(t\ge0\)) thay vao phương trình ta được:

\(\sqrt{\frac{t^2+1}{2}+4+3t}\)+\(\sqrt{\frac{t^2+1}{2}+12-5t}=7\sqrt{2}\)

\(\Leftrightarrow\sqrt{\frac{t^2+6t+9}{2}}+\sqrt{\frac{t^2-10t+25}{2}}=7\sqrt{2}\)

\(\Leftrightarrow\frac{\sqrt{\left(t+3\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(t-5\right)^2}}{\sqrt{2}}=7\sqrt{2}\)

\(\Leftrightarrow\frac{\left|t+3\right|+\left|t-5\right|}{\sqrt{2}}=7\sqrt{2}\)

\(\Leftrightarrow t+3+\left|t-5\right|=14\)(vì \(t\ge0\Rightarrow t+3>0\))

\(\Leftrightarrow t+\left|t-5\right|=11\)

Xét TH: \(t-5\ge0\Leftrightarrow t\ge5\) thì ta có:

\(t+t-5=11\)

\(\Leftrightarrow2t=16\)

\(\Leftrightarrow t=8\)(chọn)

Xét TH: \(t-5< 0\Leftrightarrow t< 5\) thì ta có:

\(t-t+5=11\)

\(\Leftrightarrow5=11\)(vô lí nên loại)

Lại có: \(t=8\)

\(\Leftrightarrow\sqrt{2x-1}=8\)

\(\Leftrightarrow2x-1=64\)

\(\Leftrightarrow2x=63\)

\(\Leftrightarrow x=\frac{63}{2}=31\frac{1}{2}\)

Vậy nghiệm của phương trình là x=31\(\frac{1}{2}\)

12 tháng 9 2019
https://i.imgur.com/hJcTrbD.jpg
3 tháng 9 2019

\(\sqrt{3x-2}+\sqrt{3+x}=\sqrt{5x+4}\)

\(\left(\sqrt{3x-2}+\sqrt{3+x}\right)^2=\left(\sqrt{5x+4}\right)^2\)

\(3x-2+3+x+2\sqrt{\left(2x-2\right)\left(3+x\right)}=5x+4\)

\(4x+3+2\sqrt{6x+2x^2-6-2x}=5x+4\)

\(2\sqrt{2x^2+4x-6}=5x+4-4x-3\)

\(2\sqrt{2x^2+4x-6}=x+1\)

\(\left(2\sqrt{2x^2+4x-6}\right)^2=\left(x+1\right)^2\)

\(4\left(2x^2+4x-6\right)=x^2+2x+1\)

\(8x^2+16x-24=x^2+2x+1\)

\(8x^2+16x-24-x^2-2x-1=0\)

\(7x^2+14x-25=0\)

\(x_1=\frac{-7+4\sqrt{14}}{7}\)

\(x_2=\frac{-7-4\sqrt{14}}{7}\)

3 tháng 9 2019

Đkxđ đâu bạn

5 tháng 9 2019

ĐKXĐ : \(\left\{{}\begin{matrix}3x-2\ge0\\3+x\ge0\\5x+4\ge0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge\frac{2}{3}\\x\ge-3\\x\ge-\frac{4}{5}\end{matrix}\right.\)

=> \(x\ge\frac{2}{3}\) (1)

Ta có : \(\sqrt{3x-2}+\sqrt{3+x}=\sqrt{5x+4}\)

<=> \(\left(\sqrt{3x-2}+\sqrt{3+x}\right)^2=\left(\sqrt{5x+4}\right)^2\)

<=> \(\left(3x-2\right)+2\sqrt{\left(3x-2\right)\left(3+x\right)}+\left(3+x\right)=5x+4\)

<=> \(3x-2+2\sqrt{\left(3x-2\right)\left(3+x\right)}+3+x=5x+4\)

<=> \(2\sqrt{\left(3x-2\right)\left(3+x\right)}=5x+4+2-3-x-3x\)

<=> \(2\sqrt{\left(3x-2\right)\left(3+x\right)}=x+3\)

<=> \(\sqrt{\left(3x-2\right)\left(3+x\right)}=\frac{x+3}{2}\)

ĐKXĐ : \(\frac{x+3}{2}\ge0\)

=> \(x+3\ge0\)

=> \(x\ge-3\) (2)

Từ (1) và (2)

=> \(x\ge\frac{2}{3}\)

<=> \(\left(\sqrt{\left(3x-2\right)\left(3+x\right)}\right)^2=\left(\frac{x+3}{2}\right)^2\)

<=> \(\left(3x-2\right)\left(3+x\right)=\frac{\left(x+3\right)^2}{4}\)

<=> \(9x-6+3x^2-2x=\frac{x^2+6x+9}{4}\)

<=> \(\frac{4\left(9x-6+3x^2-2x\right)}{4}=\frac{x^2+6x+9}{4}\)

<=> \(4\left(9x-6+3x^2-2x\right)=x^2+6x+9\)

<=> \(36x-24+12x^2-8x=x^2+6x+9\)

<=> \(36x-24+12x^2-8x-x^2-6x-9=0\)

<=> \(22x-33+11x^2=0\)

<=> \(11x^2+33x-11x-33=0\)

<=> \(11x\left(x-1\right)+33\left(x-1\right)=0\)

<=> \(\left(11x+33\right)\left(x-1\right)=0\)

<=> \(\left\{{}\begin{matrix}11x+33=0\\x-1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=-3\left(L\right)\\x=1\left(TM\right)\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là x = 1 .

12 tháng 9 2019

Vũ Minh TuấnLê Thị Thục Hiền@Nk>↑@

12 tháng 9 2019

Đề hơi sai sai khocroi

6 tháng 9 2019

ĐKXĐ : \(x-1\ge0\)

=> \(x\ge1\)

Ta có : \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=5\)

<=> \(\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=5\)

<=> \(\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=5\)

<=> \(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=5\)

<=> \(|\sqrt{x-1}-1|+|\sqrt{x-1}+1|=5\)

<=> \(|\sqrt{x-1}-1|+\sqrt{x-1}+1=5\) ( 1 )

+, TH 1 : \(\sqrt{x-1}-1\ge0\) <=> \(x\ge2\) . Khi đó phương trình (1) được :

\(\sqrt{x-1}-1+\sqrt{x-1}+1=5\)

<=> \(2\sqrt{x-1}=5\)

<=> \(\sqrt{x-1}=2,5\)

<=> \(x-1=6,25\)

<=> \(x=7,25\) ( TM )

TH 2 : \(\sqrt{x-1}-1\le0\) <=> \(x\le2\) . Khi đó phương trình (1) được :

\(1-\sqrt{x-1}+\sqrt{x-1}+1=5\)

<=> \(2=5\) ( Vô lý )

Vậy phương trình trên có nghiệm duy nhất là x = 7,25 .

17 tháng 2 2020

(\(\sqrt{1+x}+\sqrt{1-x}\))\(\left(2+2\sqrt{1-x^2}\right)=8\)(1)(đk: \(-1\le x\le1\))
đặt \(\sqrt{1+x}+\sqrt{1-x}\) =a (\(a\ge0\)

=> \(a^2=2+2\sqrt{1-x^2}\)

khi đó

(1)\(\Leftrightarrow a^3=8\Leftrightarrow a=\sqrt{8}=2\) (tm)

=>\(\sqrt{1+x}+\sqrt{1-x}\) =2

\(\Leftrightarrow2+2\sqrt{1-x^2}=4\)

\(\Leftrightarrow2\sqrt{1-x^2}=2\)

\(\Leftrightarrow\sqrt{1-x^2}=1\Leftrightarrow1-x^2=1\)

\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)(tm)

vậy x=0 là nghiệm của phương trình

7 tháng 9 2019

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)

\(\Leftrightarrow\sqrt{x-1-2.\sqrt{x-1}.2+4}+\sqrt{x-1-2.\sqrt{x-1}.3+9}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)=5

bạn giải tiếp nhé

8 tháng 9 2019

@Hiền Hương bạn giải chi tiết hộ mk vs

12 tháng 9 2019

Xin lỗi bạn nha mình làm sai bucminh

Nhờ bạn sửa lại \(x\ge3\) và x<3 và nghiệm là \(1\le x\le5\) nha Trần Ngọc Thảo

12 tháng 9 2019

Ta có:\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}\)(ĐK: \(x\ge1\))

\(=\sqrt{\left(x-1\right)-2\sqrt{x-1}.2+4}+\sqrt{\left(x-1\right)+2\sqrt{x-1}.3+9}\)

\(=\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}\)

\(=\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}+3\right|\)

Thay vào phương trình ta được:

\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}+3\right|=5\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\sqrt{x-1}+3=5\)(vì \(\sqrt{x-1}\ge0\Rightarrow\sqrt{x-1}+3>0\))

-TH: \(\sqrt{x-1}-2\ge0\Leftrightarrow\sqrt{x-1}\ge2\Leftrightarrow x-1\ge4\Leftrightarrow x\ge3\)thì ta có:

\(\sqrt{x-1}-2+\sqrt{x-1}+3=5\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

\(\Leftrightarrow x=5\)

-TH:\(\sqrt{x-1}-2< 0\Leftrightarrow x< 3\) thì ta có:

\(2-\sqrt{x-1}+\sqrt{x-1}+3=5\)

\(\Leftrightarrow5=5\)(luôn đúng \(\forall1\le x< 3\))

Vậy nghiệm của phương trình là \(1\le x< 3\)\(x=5\)