Tính nhanh nếu có thể :
\(\frac{5.6+6.7+7.8+8.9+9.10}{15.12+18.14+21.16+24.18+27.20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
\(B=\frac{1}{3}-\frac{1}{10}\)
\(B=\frac{7}{30}\)
\(B=\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-\frac{1}{6.7}-\frac{1}{7.8}-\frac{1}{8.9}-\frac{1}{9.10}\)
\(\Rightarrow B=\frac{1}{3.4}-\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(\Rightarrow B=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow B=\frac{1}{3}-\frac{1}{4}-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(\Rightarrow B=\frac{1}{12}-\frac{6}{40}\)
\(\Rightarrow B=\frac{-1}{15}\)
\(\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}-\frac{19}{9.10}+\frac{21}{10.11}\)
\(=\frac{3+4}{3.4}-\frac{4+5}{4.5}+\frac{5+6}{5.6}-\frac{6+7}{6.7}+\frac{7+8}{7.8}-\frac{8+9}{8.9}-\frac{9+10}{9.10}+\frac{10+11}{10.11}\)
\(=\frac{1}{3}+\frac{1}{4}-\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+\frac{1}{6}-\frac{1}{6}-\frac{1}{7}+\frac{1}{7}+\frac{1}{8}-\frac{1}{8}-\frac{1}{9}+\frac{1}{9}+\frac{1}{10}-\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{3}-\frac{1}{11}=\frac{8}{33}\)
\(A=1.2+2.3+3.4+...+9.10\)
\(3A=1.2.3+2.3.3+3.4.3+...+9.10.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+9.10.\left(11-8\right)\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5+...-8.9.10+9.10.11\)
\(=9.10.11\)
\(\Rightarrow A=\frac{9.10.11}{3}=330\)
Lời giải 1 :
Nhận xét : Khoảng cách giữa 2 thừa số trong mỗi số hạng là 1. Nhân 2 vế của A với 3 lần khoảng cách này ta được :
3A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + 4.5.(6 - 3) + 5.6.(7 - 4) + 6.7.(8 - 5) + 7.8.(9 - 6) + 8.9.(10 - 7) + 9.10.(11 - 8)
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - … + 8.9.10 - 8.9.10 + 9.10.11
= 9.10.11 = 990.
A = 990/3 = 330
Ta chú ý tới đáp số 990 = 9.10.11, trong đó 9.10 là số hạng cuối cùng của A và 11 là số tự nhiên kề sau của 10, tạo thành tích ba số tự nhiên liên tiếp. Ta cã kết quả tæng qu¸t sau :
A = 1.2 + 2.3 + … + (n - 1).n = (n - 1).n.(n + 1)/3
Lời giải khác :
Lời giải 2 :
3.A = 3.(1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)
= 3.(0.1 + 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10)
= [1.(0 + 2) + 3.(2 + 4) + 5.(4 + 6) + 7.(6 + 8) + 9.(8 + 10)].3
= 3.(1.1.2 + 3.3.2 + 5.5.2 + 7.7.2 +9.9.2) = (12 + 32 + 52 + 72 + 92).2.3
= (12 + 32 + 52 + 72 + 92).6 = 990 = 9.10.11
Ta chưa biết cách tính tổng bình phương các số lẻ liên tiếp bắt đầu từ 1, nhưng liên hệ với lời giải 1, ta có :
(12 + 32 + 52 + 72 + 92).6 = 9.10.11, hay
(12 + 32 + 52 + 72 + 92) = 9.10.11/6
giữ nguyên tử / 3.5 . 6.2+6.3.2.7+3.7.8.2+3.8.2.9+3.9.2.10
rút gọn và tử còn 1 mawux còn 6+6+6+6+6 = 30
đáp số 1/30