K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

 TL:

\(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y+xy^2-yx^2-xy^2-y^3\)

\(=x^3-y^3\)

2 tháng 9 2019

     \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=\left(x^3+x^2y+xy^2\right)-\left(x^2y+xy^2+y^3\right)\)

\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)

\(=x^3-y^3\)

6 tháng 1 2021

B1: a)\(xy\left(3x-2y\right)-2xy^2=3x^2y-2y^2x-2xy^2=3x^2y-4xy^2\)

b) \(\left(x^2+4x+4\right):\left(x+2\right)=\left(x+2\right)^2:\left(x+2\right)=\left(x+2\right)\)

\(\dfrac{2\left(x-1\right)}{x^2}.\dfrac{x}{\left(x-1\right)}=\dfrac{2\left(x-1\right)x}{x^2\left(x-1\right)}=\dfrac{2}{x}\)

B2:

a)\(2x^2-4x+2=2\left(x^2-2x+1\right)=2\left(x-1\right)^2\)

b)\(x^2-y^2+3x-3y=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

Mấy bài này là mấy bài rất rất rất cơ bản, học sinh TB cũng phải tự làm được, mấy bài kiểu này đừng nên đăng lên hỏi nha:vv

10 tháng 10 2017

Tuy mk không biết làm nhưng mình sẽ đánh dấu bài này mk không cần bạn k nhưng bạn k trong các câu khác nha.

Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp Trang Nhung giải bài toán này.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

\(\begin{array}{l}A - B = \left( {5{x^2}y + 5x - 3} \right) - \left( {xy - 4{x^2}y + 5x - 1} \right)\\ = 5{x^2}y + 5x - 3 - xy + 4{x^2}y - 5x + 1\\ = \left( {5{x^2}y + 4{x^2}y} \right) - xy + \left( {5x + 5x} \right) + \left( { - 3 + 1} \right)\\ = 9{x^2}y - xy + 10x - 2\end{array}\)

30 tháng 11 2015

1. 4-32x3

= 4.(1-8x3)

= 4.[13-(2x)3 ]

= 4.(1-2x).(1+2x+4x2)

2. b. \(\left(\frac{x}{xy-y^2}-\frac{2x-y}{xy-x^2}\right):\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=\left[\frac{x}{y\left(x-y\right)}+\frac{2x-y}{x\left(x-y\right)}\right]:\left(\frac{y}{xy}+\frac{x}{xy}\right)\)

\(=\left[\frac{x.x}{y\left(x-y\right).x}+\frac{\left(2x-y\right).y}{x\left(x-y\right).y}\right]:\left(\frac{x+y}{xy}\right)\)

\(=\left[\frac{x^2+2xy-y^2}{xy\left(x-y\right)}\right]:\left(\frac{x+y}{xy}\right)\)

\(=\left[\frac{-\left(x-y\right)^2}{xy\left(x-y\right)}\right].\frac{xy}{x+y}\)

\(=\frac{-\left(x-y\right)}{xy}.\frac{xy}{x+y}\)

\(=\frac{y-x}{x+y}\)

12 tháng 10 2019

\(y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=\left(xy-y^2\right)\left(x-y\right)+xy\left(x-y\right)\)

\(=\left(xy-y^2+xy\right)\left(x-y\right)\)

\(=\left(2xy-y^2\right)\left(x-y\right)\)

12 tháng 10 2019

y ( x - y)2 + xy ( x-y) = (x - y) [(x-y) y +xy]

= (x-y) ( 2xy -y2)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

\(\begin{array}{l}A + B = \left( {5{x^2}y + 5x - 3} \right) + \left( {xy - 4{x^2}y + 5x - 1} \right)\\ = 5{x^2}y + 5x - 3 + xy - 4{x^2}y + 5x - 1\\ = \left( {5{x^2}y - 4{x^2}y} \right) + xy + \left( {5x + 5x} \right) + \left( { - 3 - 1} \right)\\ = {x^2}y + xy + 10x - 4\end{array}\)

9 tháng 10 2019

Đặt x^2+y^2+z^2 =a ; xy+yz+zx=b

=> (x+y+z)^2 =x^2+y^2+z^2+2xy+2yz+2zx =a+2b

Ta có A= (x^2+y^2+z^2)(xy+yz+zx) +(x+y+z)^2

= a(a+2b)+b^2=a^2+2ab+b^2=(a+b)^2

=(x^2+y^2+z^2 +xy+yz+zx)^2

26 tháng 9 2019

\(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2-\left(xy+yz+zx\right)^2\left(1\right)\)

Đặt \(x^2+y^2+z^2=a\)

\(xy+yz+zx=b\Rightarrow2\left(xy+yz+zx\right)=2b\)

\(\Rightarrow a+2b=\left(x+y+z\right)^2\)

Kết hợp (1) ta được : \(A=a\left(a+2b\right)+b^2\)

                                      \(=a^2+2ab+b^2\)

                                     \(=\left(a+b\right)^2\)

                                      \(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)