Cho x, y, z \(\ne0\)t/m x + y + z = 0
CMR: \(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta được :
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}=x+y+z\)
Hay \(x+y+z=\frac{1}{2}\)
Thay vào được \(\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\) \(\Leftrightarrow x=\frac{1}{2}\)
\(\frac{y}{\frac{1}{2}+1-y}=\frac{1}{2}\Rightarrow y=\frac{1}{2}\)
\(\frac{z}{\frac{1}{2}-2-z}=\frac{1}{2}\Rightarrow z=-\frac{1}{2}\)
Vậy y = 1/2
Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)
Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)
Áp dụng Bất Đẳng Thức Cauchy ta có
\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)
\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)
Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)
\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)
Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)
Áp dụng bđt côsi cho 2 số dương lần lượt ta có :
\(1+\frac{y}{x}\ge2\sqrt{\frac{y}{x}}\)
\(1+\frac{z}{y}\ge2\sqrt{\frac{z}{y}}\)
\(1+\frac{x}{z}\ge2\sqrt{\frac{x}{z}}\)
Nhân vế theo vế ta đc : \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\ge8\sqrt{\frac{xyz}{xyz}}=8\)
Dấu = xảy ra khi : \(1=\frac{y}{x}\)=> x=y và \(1=\frac{z}{y}\) => z=y và \(1=\frac{x}{z}\) => x=z
=> x=y=z
Thay vào M ta được : \(M=\frac{x^2}{2x^2}+\frac{y^2}{2y^2}+\frac{z^2}{2z^2}=\frac{3}{2}\).
Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)
Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))
làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)
vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)
[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)
dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)
Sử dụng BĐT AM-GM, ta có:
\(x^3+y^2\ge2yx\sqrt{x}\)
\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)
Tương tự cộng lại suy ra:
\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
a/ \(\frac{2x+1}{\sqrt{x^2+2}}+\left(x+1\right)\left(\sqrt{1+\frac{2x+1}{x^2+2}}-1\right)+2x+1=0\)
\(\Leftrightarrow\frac{2x+1}{\sqrt{x^2+2}}+\frac{\left(x+1\right)\left(2x+1\right)}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+2x+1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\frac{1}{\sqrt{x^2+2}}+\frac{x+1}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+1\right)=0\)
\(\Rightarrow x=-\frac{1}{2}\)
b/ \(Q\ge\frac{\left(x+y+z\right)^2}{xyz\left(x+y+z\right)}+\frac{\left(x^3+y^3+z^3\right)^2}{xy+yz+zx}\ge\frac{x+y+z}{xyz}+\frac{\left(x^2+y^2+z^2\right)^3}{\left(x+y+z\right)^2}\)
\(Q\ge\frac{27\left(x+y+z\right)}{\left(x+y+z\right)^3}+\frac{\left(x+y+z\right)^6}{27\left(x+y+z\right)^2}=\frac{27}{\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}\)
\(Q\ge\frac{27}{64\left(x+y+z\right)^2}+\frac{27}{64\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}+\frac{837}{32\left(x+y+z\right)^2}\)
\(Q\ge3\sqrt[3]{\frac{27^2\left(x+y+z\right)^4}{64^2.27\left(x+y+z\right)^4}}+\frac{837}{32.\left(\frac{3}{2}\right)^2}=\frac{195}{16}\)
"=" \(\Leftrightarrow x=y=z=\frac{1}{2}\)
Nguyễn Trúc Giang, Duy Khang, Vũ Minh Tuấn, Võ Hồng Phúc, tth, No choice teen, Phạm Lan Hương,
Nguyễn Lê Phước Thịnh, @Nguyễn Việt Lâm, @Akai Haruma
giúp em vs ạ! Cần trước 5h chiều nay ạ
Thanks nhiều
Ta co:\(x+y+z=0\)
\(\Leftrightarrow\frac{x+y+z}{xyz}=0\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)
\(\Leftrightarrow2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}|\)
\(x+y+z=0\)
\(\Leftrightarrow\frac{x+y+z}{xyz}=0\)(Vì \(x,y,z\ne0\))
\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=0\)
\(\Leftrightarrow2\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)=0\)
Mà \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)\)
nên \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)(Áp dụng HĐT \(\sqrt{x^2}=\left|x\right|\))