Cho tam giác cân ABC ( AB = AC ). Tia phân giác Ax của \(\widehat{BAC}\)cắt BC tại H. Trên cạnh AB lấy M. Trên tia đối của tia CA lấy N sao cho BM = CN.
a. Nối M với N cắt Bc tại I. CM: I là trung điểm của MN
b. Tia trung trực của MN cắt AC tại O. CMR: OC \(\perp\)AC
c. Biết AB = 6 cm, OB = 4,5 cm. Tính \(S_{ABC}\)
Câu b
Từ N kể đường thẳng song song với BC cắt đường thẳng AB tại K => KBCN là hình thang (*)
Lại có góc BKN = ABC ( đồng vị), CNK = ACB (đồng vị) và ABC = ACB nên BKN = CNK (**)
từ (*) và (**) => KBCN là hình thang cân => BK = CN = BM.
=> AK = AN nên tam giác AKN cân tại A => AO là đường trung trực của KN => OK = ON (4)
vì OI là trung trực của MN nên OM = ON (5)
từ (4) và (5) => OM = OK => tam giác OMK cân tại O lại có BM = BK (cmt) nên OB v^g góc với AB.
Tam giác ABO và Tam giác ACO có: AB = ÃC, BAO = CAO (gt) , AO chung nên tam giác ABO = tam giác ACO (c,g,c) => ACO = ABO = 90độ. hay OC vuông góc với AC.