K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

1.Vì các tia phân giác của các góc B và C cắt nhau tại I

\(\Rightarrow\)I là giao của các đường phân giác trong tam giác

\(\Rightarrow\)AI là tia phân giác của góc A

20 tháng 6 2019

1.

Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)

\(\widehat{IDB}=\widehat{IEB}=90^0\)

\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)

BI cạnh huyền chung

⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)       (1)

Xét hai tam giác vuông IEC và IFC, ta có ;

\(\widehat{IEC}=\widehat{IFC}=90^0\)

\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

         \(\widehat{IDA}=\widehat{IFA}=90^0\)

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)

Vậy AI là tia phân giác của \(\widehat{A}\)

30 tháng 11 2023

Sửa đề: Vuông góc với AC,AP tại N,P

a: Xét ΔBPI vuông tại P và ΔBMI vuông tại M có

BI chung

\(\widehat{PBI}=\widehat{MBI}\)

Do đó: ΔBPI=ΔBMI

=>BP=BM

b: Xét ΔIMC vuông tại M và ΔINC vuông tại N có

CI chung

\(\widehat{MCI}=\widehat{NCI}\)

Do đó: ΔIMC=ΔINC

=>IM=IN

c: ΔMCI=ΔNCI

=>MC=CN

BP+CN

=BM+MC

=BC

d: ΔBPI=ΔBMI

=>IP=IM

mà IM=IN

nên IP=IN

Xét ΔAPI vuông tại P và ΔANI vuông tại N có

AI chung

IP=IN

Do đó: ΔAPI=ΔANI

=>\(\widehat{PAI}=\widehat{NAI}\)

=>AI là phân giác của \(\widehat{BAC}\)