K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

Nếu \(y\in N\)thì:

\(\sqrt{x}\in N\\ \sqrt{x+3}\in N\)Hay x và x + 3 là một số chính phương.

\(x=n^2 ; x+3 = m^2 \)     \(\Rightarrow\)    \(x+3-x=m^2-n^2\)    \(\Rightarrow\)  \(3 = (m-n)(m+n)\)

Ta thấy \(\hept{\begin{cases}3=3\times1\\\left(m+n\right)-\left(m-n\right)⋮2\\\left(3-1\right)⋮2\end{cases}}\Rightarrow\)\(m+n=3\)\(m-n=1\)

Nên m=2 ; n=1

Giải một lúc ta đc y=3

a: \(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}\cdot\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{4xy}{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

b: \(=\sqrt{x}+\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}\)

\(=\sqrt{x}-\sqrt{y}-\sqrt{x}+\sqrt{y}=0\)

c: \(=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

 

\(A=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}=x-\sqrt{xy}+y\)

\(B=\dfrac{\sqrt{x}-\sqrt{y}}{x\sqrt{x}-y\sqrt{y}}=\dfrac{1}{x+\sqrt{xy}+y}\)

\(C=\dfrac{3\sqrt{3}+x\sqrt{x}}{3-\sqrt{3x}+x}=\sqrt{x}+\sqrt{3}\)

\(D=\dfrac{x+\sqrt{5x}+5}{x\sqrt{x}-5\sqrt{5}}=\dfrac{1}{\sqrt{x}-\sqrt{5}}\)

a) Ta có: \(P=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

\(=\left(\dfrac{2}{\sqrt{xy}}+\dfrac{1}{x}+\dfrac{1}{y}\right):\dfrac{x\sqrt{x}+y\sqrt{x}+x\sqrt{y}+y\sqrt{y}}{x\sqrt{xy}+y\sqrt{xy}}\)

\(=\left(\dfrac{x+2\sqrt{xy}+y}{xy}\right):\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}\cdot\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

5 tháng 7 2021

a) Đk:\(x>0;y>0\)

\(P=\left[\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}.\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{x\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{xy}+y\sqrt{xy}}\)

\(=\left[\dfrac{2}{\sqrt{xy}}+\dfrac{x+y}{xy}\right]:\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)

\(=\dfrac{2\sqrt{xy}+x+y}{xy}:\dfrac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}.\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

b) \(xy=16\Leftrightarrow x=\dfrac{16}{y}\)

\(P=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}=\dfrac{1}{\sqrt{\dfrac{16}{y}}}+\dfrac{1}{\sqrt{y}}=\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\)

Áp dụng AM-GM có:

\(\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\ge2\sqrt{\dfrac{\sqrt{y}}{4}.\dfrac{1}{\sqrt{y}}}=1\)

\(\Rightarrow P\ge1\)

Dấu "=" xảy ra khi \(y=4\Rightarrow x=4\)

Vậy x=y=4 thì P đạt GTNN là 1

11 tháng 7 2017

\(=\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right):\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\left[\left(\sqrt{x}+\sqrt{y}\right)-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right].\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

\(A=\dfrac{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)-x\sqrt{x}+y\sqrt{y}}{x-y}\cdot\dfrac{\left(\sqrt{x}+\sqrt{y}\right)}{x-\sqrt{xy}+y}\)

\(=\dfrac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\cdot\dfrac{1}{x-\sqrt{xy}+y}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b: căn xy>=0

x-căn xy+y

=x-2*căn x*1/2*căn y+1/4*y+3/4y

=(căn x-1/2*căn y)^2+3/4y>0

=>A>=0

22 tháng 12 2022

`[\sqrt{27}-\sqrt{15}]/[3-\sqrt{5}]+4/[2+\sqrt{3}]-6/\sqrt{3}`

`=[\sqrt{3}(3-\sqrt{5})]/[3-\sqrt{5}]+[4(2-\sqrt{3})]/[4-3]-[2\sqrt{3}.\sqrt{3}]/\sqrt{3}`

`=\sqrt{3}+8-4\sqrt{3}-2\sqrt{3}`

`=8-5\sqrt{3}`

_______________________________________

`[x-y]/[\sqrt{x}+\sqrt{y}]-[x\sqrt{y}+y\sqrt{x}]/\sqrt{xy}`    `ĐK:  x,y > 0`

`=[(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})]/[\sqrt{x}+\sqrt{y}]-[\sqrt{xy}(\sqrt{x}+\sqrt{y})]/\sqrt{xy}`

`=\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}`

`=-2\sqrt{y}`

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

A/

\(A=\frac{(\sqrt{x}+\sqrt{y})^2-(\sqrt{x}-\sqrt{y})^2}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}.\frac{x-y}{\sqrt{xy}}\\ =\frac{x+y+2\sqrt{xy}-(x+y-2\sqrt{xy})}{x-y}.\frac{x-y}{\sqrt{xy}}\\ =\frac{4\sqrt{xy}}{x-y}.\frac{x-y}{\sqrt{xy}}=4\)

Vậy biểu thức A không phụ thuộc giá trị vào biến.

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

B/
\(B=\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{x+\sqrt{xy}+y}-2\sqrt{y}\\ =\sqrt{x}+\sqrt{y}-(\sqrt{x}-\sqrt{y})-2\sqrt{y}\\ =2\sqrt{y}-2\sqrt{y}=0\)

Vậy giá trị của biểu thức B không phụ thuộc vào giá trị của biến.

22 tháng 12 2023

\(A=\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\left(dkxd:x,y\ge0,x\ne y\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x^2}-\sqrt{y^2}}.\dfrac{x-y}{\sqrt{xy}}\)

\(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}.\dfrac{x-y}{\sqrt{xy}}\)

\(=\dfrac{4\sqrt{xy}}{\sqrt{xy}}=4\)

\(B=\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\left(dkxd:x,y\ge0,x\ne y\right)\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}-2\sqrt{y}\)

\(=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}-2\sqrt{y}\\ =0\)

Vậy biểu thức A và B không phụ thuộc vào biến.

8 tháng 2 2021

1. ĐKXĐ : \(xy>0\)

Ta có : \(P=\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{-\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\left(\dfrac{\sqrt{x}+\sqrt{y}}{x-2\sqrt{xy}+y+\sqrt{xy}}\right)\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\left(\dfrac{\sqrt{x}+\sqrt{y}}{x-2\sqrt{xy}+y+\sqrt{xy}}\right)\)

\(=\dfrac{\left(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-\left(x+\sqrt{xy}+y\right)}{x-\sqrt{xy}+y}=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{x-\sqrt{xy}+y}\)

\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

2. Ta thấy : \(x-\sqrt{xy}+y=x-\dfrac{2.\sqrt{x}.\sqrt{y}}{2}+\dfrac{y}{4}+\dfrac{3y}{4}\)

\(=\left(\sqrt{x}-\dfrac{\sqrt{y}}{2}\right)^2+\dfrac{3y}{4}\)

\(\left\{{}\begin{matrix}\left(\sqrt{x}-\dfrac{\sqrt{y}}{2}\right)^2\ge0\\\dfrac{3y}{4}\ge0\end{matrix}\right.\)

\(\Rightarrow x-\sqrt{xy}+y\ge0\)

Lại có : \(\sqrt{xy}\ge0\)

\(\Rightarrow P\ge0\) ( ĐPCM )