Cho 5 điểm trên mặt phẳng . Trong đó không có 3 điểm nào thẳng hàng . Chứng minh rằng bao giờ cũng có thể chọn ra được 4 điểm là đỉnh của 1 tứ giác lồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 5 điểm đó lần lượt là A,B,C,D,E
Nếu lấy 4 điểm A,B,D,C làm 4 đỉnh của 1 tứ giác lồi thì bài toán đc chứng minh
Nếu 4 điểm đó ko là đỉnh của 1 tứ giác lồi thì có 1 điểm phải nằm trong tam giác mà đỉnh của tam giác là 3 điểm còn lại.
Lấy điểm D nằm trong tam giác
kẻ AD cát BC tại M
BD cắt AC tại N
CD cắt AB tại P
Chia mặt phẳng thành 9 miền khác nhau
ADN là miền thứ nhất
ADP là miền thứ 2
BDP là miền thứ 3
BDM là miền thứ tư
CDM là miền thứ 5
CDN là miền thứ 6
trên nửa mặt phẳng bờ là đoạn thẳng AC ko chứa điểm B là miền thứ 7
tương tự trên nửa mặt phẳng bờ là đoạn thẳng AB ko chứa điểm C là miền thứ 8
trên nửa mặt phẳng bờ là đoạn thẳng BC ko chứa điểm A là miền thứ 9
Nếu điểm E thuộc miền 1,4,8 ta chọn 4 điểm E,A,D,B. Nếu điểm E thuộc miền 2,5,7 ta chọn E và A,D,C. Nếu E thuộc miền 3,6,9 thì ta chọn E và B,D,C.
Đáp án A.
Ta có 3TH.
+) TH1: 2 trong số 4 điểm A1, A2, A3, A4 tạo thành 1 cạnh, suy ra có C 4 2 . 6 = 36 tam giác.
+) TH2: 1 trong số 4 điểm A1, A2, A3, A4 là 1 đỉnh của tam giác, suy ra có 4 C 6 2 = 60 tam giác.
+) TH3: 0 có đỉnh nào trong 4 điểm A1, A2, A3, A4 là đỉnh của tam giác có C 6 3 = 20 tam giác. Suy ra có 36 + 60 + 20 = 116 tam giác có thể lập được.
Đáp án A
Lấy 3 đỉnh trong 10 điểm trên có C 10 3 = 120 cách
Lấy 3 đỉnh trong 4 điểm thẳng hàng có C 4 3 = 4 cách
Do đó, số tam giác cần tính là 120 − 4 = 116