K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

Ta có M=a(b+c)+3b(c+a)+5c(a+b)=a(3-a)+3b(3-b)+5c(3-c)=\(\frac{81}{4}\)-\(\left(a-\frac{3}{2}\right)^2+3\left(b-\frac{3}{2}\right)^2+5\left(c-\frac{3}{2}\right)^2\)

Đặt x=\(\left|a-\frac{3}{2}\right|\),y=\(\left|b-\frac{3}{2}\right|\),z=\(\left|c-\frac{3}{2}\right|\)=>x+y+z\(\ge\left|a+b+c-\frac{9}{2}\right|=\frac{3}{2}\)

Khi đó M=\(\frac{81}{4}-\left(x^2+3y^2+5z^2\right)\)

Đưa thêm các tham số\(\alpha,\beta,\gamma>0\)Áp dụng bất đẳng thức AM-GM:\(x^2+\alpha^2\ge2x\alpha\)(1);\(3y^2+3\beta^2\ge6y\beta\)(2);\(5z^2+5\gamma^2\ge10z\gamma\)(3)

Suy ra: \(M-\alpha^2-3\beta^2-5\gamma^2\le\frac{81}{4}-2\left(x\alpha+3y\beta+5z\gamma\right)\)

Ta chọn \(\alpha=3\beta=5\gamma\)\(\Rightarrow M\le\frac{81}{4}+\alpha^2+3\beta^2+5\gamma^2-2\alpha\left(x+y+z\right)\)\(\le\frac{81}{4}+\alpha^2+3\beta^2+5\gamma^2-3a\)

Ta thấy dấu bằng các bất đẳng thức (1),(2),(3) xảy ra khi \(x=\alpha,y=\beta,z=\gamma\)\(\Rightarrow\alpha+\beta+\gamma=\alpha+\frac{\alpha}{3}+\frac{\alpha}{5}=x+y+z=\frac{3}{2}\)\(\Rightarrow\alpha=\frac{45}{46}\),\(\beta=\frac{15}{46},\gamma=\frac{9}{46}\)

Vậy MaxM=\(\le\frac{81}{4}+\left(\frac{45}{46}\right)^2+3\left(\frac{15}{46}\right)^2+5\left(\frac{9}{46}\right)^2-3.\frac{45}{46}\)=\(\frac{432}{23}\)

28 tháng 6 2019

Không có mô tả ảnh.

giúp mình với

28 tháng 6 2019

Với \(b=\frac{3-\sqrt{5}}{2}\)   => \(\sqrt{b}=\sqrt{\frac{6-2\sqrt{5}}{4}}=\frac{\sqrt{5}-1}{2}\)=> \(\sqrt{b}=1-b\)(*)

Áp dụng bất đẳng thức cosi ta có :

\(x^2+by^2\ge2xy\sqrt{b}\)

\(x^2+bz^2\ge2xz\sqrt{b}\)

\(\left(1-b\right)y^2+\left(1-b\right)z^2\ge2\left(1-b\right)yz\)

Cộng 3 vế của BĐT và kết hợp với (*) ta có

\(2x^2+y^2+z^2\ge2\sqrt{b}\left(xy+yz+xz\right)=2\sqrt{b}\)=> \(MinA=2\sqrt{b}\)với \(b=\frac{3-\sqrt{5}}{2}\)

Dấu bằng xảy ra khi \(y=z=\frac{x}{\sqrt{b}}\)và xy+yz+xz=1

=> \(x=\sqrt{\frac{b\sqrt{b}}{2b+\sqrt{b}}};y=z=\sqrt{\frac{\sqrt{b}}{2b+\sqrt{b}}}\)với \(b=\frac{3-\sqrt{5}}{2}\)

23 tháng 4 2020

a) Thay m=2 vào hpt, ta có \(\hept{\begin{cases}-x+2y=6\\6x-y=-4\end{cases}}\)

                                           \(\Leftrightarrow\hept{\begin{cases}y=6x+4\\-x+12x+8=6\end{cases}}\)

                                          \(\Leftrightarrow\hept{\begin{cases}11x=-2\\y=6x+4\end{cases}}\)

                                         \(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{11}\\y=\frac{32}{11}\end{cases}}\)

Vậy m=2 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{11};\frac{32}{11}\right)\)

b) Ta có \(\hept{\begin{cases}\left(m-3\right)x+2y=6\\y=3mx+4\end{cases}}\)

           \(\Leftrightarrow\hept{\begin{cases}y=3mx+4\left(1\right)\\mx-3x+6mx+8=6\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\left(7m-3\right)x=-2\)

Hpt có nghiệm duy nhất \(\Leftrightarrow\)pt (2) có nghiệm duy nhất \(\Leftrightarrow7m-3\ne0\Leftrightarrow m\ne\frac{3}{7}\)(*)

Khi đó \(\left(2\right)\Leftrightarrow x=\frac{-2}{7m-3}\). Thay vào (1) \(\Leftrightarrow y=\frac{-6m}{7m-3}+4=\frac{-6m+28m-12}{7m-3}=\frac{22m-12}{7m-3}\)

Vậy \(m\ne\frac{3}{7}\)thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{7m-3};\frac{22m-12}{7m-3}\right)\)

Vì 2x+y>0\(\Rightarrow\frac{-4}{7m-3}+\frac{22m-12}{7m-3}>0\)

                \(\Leftrightarrow\frac{22m-16}{7m-3}>0\)

                \(\Leftrightarrow\orbr{\begin{cases}22m-16>0;7m-3>0\\22m-16< 0;7m-3< 0\end{cases}}\)

               \(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11};m>\frac{3}{7}\\m< \frac{8}{11};m< \frac{3}{7}\end{cases}}\)

               \(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)

Kết hợp vs đk (*) \(\Rightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)thì 2x+y>0

a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0

=>x^2+2x-8=0

=>(x+4)(x-2)=0

=>x=2 hoặc x=-4

b: Δ=(2m-4)^2-4(m^2-5m-4)

=4m^2-16m+16-4m^2+20m+16

=4m+32

Để pt có hai nghiệm phân biệt thì 4m+32>0

=>m>-8

x1^2+x2^2=-3x1x2-4

=>(x1+x2)^2+x1x2+4=0

=>(2m-4)^2+m^2-5m-4+4=0

=>4m^2-16m+16+m^2-5m=0

=>5m^2-21m+16=0

=>(m-1)(5m-16)=0

=>m=16/5 hoặc m=1

const fi='dulieu.inp';

fo='kq.inp';

var f1,f2:text;

a,b,c,delta:real;

begin

assign(f1,fi); reset(f1);

assign(f2,fo); rewrite(f2);

readln(f1,a,b,c);

delta:=sqr(b)-4*a*c;

if delta<0 then writeln(f2,'Phuong trinh vo nghiem');

if delta=0 then writeln(f2,'Phuong trinh co nghiem kep la: ',-b/(2*a):4:2);

if delta>0 then 

begin

writeln(f2,'Nghiem thu nhat la: ',(-b+sqrt(delta))/(2*a):4:2);

writeln(f2,'Nghiem thu hai la: ',(-b-sqrt(delta))/(2*a):4:2);

end;

close(f1);

close(f2);

end. 

31 tháng 3 2021

Cảm ơn nha

NV
24 tháng 3 2023

\(2ab+6bc+2ac=7abc\Rightarrow\dfrac{6}{a}+\dfrac{2}{b}+\dfrac{2}{c}=7\)

Đặt \(\left(\dfrac{2}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow3x+2y+2z=7\)

\(C=\dfrac{4}{\dfrac{2}{a}+\dfrac{1}{b}}+\dfrac{9}{\dfrac{4}{a}+\dfrac{1}{c}}+\dfrac{4}{\dfrac{1}{b}+\dfrac{1}{c}}=\dfrac{4}{x+y}+\dfrac{9}{2x+z}+\dfrac{4}{y+z}\)

\(C\ge\dfrac{\left(2+3+2\right)^2}{x+y+2x+z+y+z}=\dfrac{49}{7}=7\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(2;1;1\right)\)

22 tháng 8 2019

a) Với m= 2, ta có phương trình:  x 2 + 2 x − 3 = 0

Ta có:  a + b + c = 1 + 2 − 3 = 0                                                             

Theo định lý Viet, phương trình có 2 nghiệm: 

x 1 = 1 ;   x 2 = − 3 ⇒ S = 1 ;   − 3 .                                                                             

b) Chứng minh rằng phương trình luôn có nghiệm  ∀ m .

Ta có:  Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ;    ∀ m                                           

Vậy phương trình luôn có nghiệm  ∀ m .                                              

c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m                                                             

Ta có:

x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0                  

Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ;   m 2 = 3 2                                                  

Vậy m= -1 hoặc m= 3/2 

a: Khi m=-5 thì pt sẽ là x^2-5x-6=0

=>x=6 hoặc x=-1

b:

Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29

Để pt có hai nghiệm thì -4m+29>=0

=>m<=29/4

x1-x2=3

=>(x1-x2)^2=9

=>(x1+x2)^2-4x1x2=9

=>5^2-4(m-1)=9

=>4(m-1)=25-9=16

=>m-1=4

=>m=5(nhận)

c: 2x1-3x2=5 và x1+x2=5

=>x1=4 và x2=1

x1*x2=m-1

=>m-1=4

=>m=5(nhận)