Cho P=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right).\)
So sánh P với \(\frac{-1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A>1/2
Xin lỗi mình đang bận để lúc khác mình sẽ giải chi tiết
Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\left(-\frac{1.3}{2.2}\right).\left(-\frac{2.4}{3.3}\right)...\left(-\frac{99.101}{100.100}\right)\)
\(=-\frac{1}{2}.\frac{101}{100}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
Vậy \(A< -\frac{1}{2}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)...\left(\frac{1}{10000}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot\frac{-15}{16}\cdot...\cdot\frac{-9999}{10000}\)
\(=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot...\cdot\frac{-99\cdot111}{100.100}\)
\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot...\cdot\frac{99\cdot111}{100\cdot100}\)
\(=\frac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot6\cdot...\cdot111\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot100\right)^2}\)
\(=\frac{101}{2\cdot100}\)
\(=\frac{101}{200}>\frac{1}{2}\)
\(A=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{100^2}\right)\)
\(A=-\left(\frac{1.3}{2.2}\right).\left(\frac{2.4}{3.3}\right)....\left(\frac{99.101}{100.100}\right)\)
\(A=-\left(\frac{1.2....99}{2.3...100}\right).\left(\frac{3.4....101}{2.3....100}\right)\)
\(A=-\left(\frac{1}{100}\right).\left(\frac{101}{2}\right)\)
\(A=\frac{-101}{200}>\frac{-1}{2}\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
M=-(\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{1-100^2}{100^2}\))
=-(\(\frac{1.3}{2.2}.\frac{2.4}{3.3}\frac{3.5}{4.4}...\frac{99.100}{100.100}\))
=-(\(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...100}{2.3.4..100}\))
=-(\(\frac{1}{100}.\frac{1}{2}\))
=\(\frac{-1}{200}\)
Lời giải:
Ta có:
\(P=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}...\frac{1-100^2}{100^2}=-\frac{(2^2-1)(3^2-1)(4^2-1)...(100^2-1)}{2^2.3^2.4^2....100^2}\)
\(=-\frac{(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)....(100-1)(100+1)}{(2.3.4..100)(2.3.4...100)}\)
\(=-\frac{[(2-1)(3-1)....(100-1)][(2+1)(3+1)....(100+1)]}{(2.3....100)(2.3.4....100)}\)
\(=-\frac{(1.2.3...99)(3.4.5...101)}{(2.3....100)(2.3....100)}=-\frac{1.2.3...99}{2.3.4..100}.\frac{3.4.5....101}{2.3.4..100}\)
\(=-\frac{1}{100}.\frac{101}{2}=\frac{-101}{200}<\frac{-100}{200}\)
Hay $P<\frac{-1}{2}$
Lời giải:
Ta có:
\(P=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}...\frac{1-100^2}{100^2}=-\frac{(2^2-1)(3^2-1)(4^2-1)...(100^2-1)}{2^2.3^2.4^2....100^2}\)
\(=-\frac{(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)....(100-1)(100+1)}{(2.3.4..100)(2.3.4...100)}\)
\(=-\frac{[(2-1)(3-1)....(100-1)][(2+1)(3+1)....(100+1)]}{(2.3....100)(2.3.4....100)}\)
\(=-\frac{(1.2.3...99)(3.4.5...101)}{(2.3....100)(2.3....100)}=-\frac{1.2.3...99}{2.3.4..100}.\frac{3.4.5....101}{2.3.4..100}\)
\(=-\frac{1}{100}.\frac{101}{2}=\frac{-101}{200}<\frac{-100}{200}\)
Hay $P<\frac{-1}{2}$