Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Từ M vẽ góc EMF = 45 độ, sao cho E thuộc AB, F thuộc AC. CM diện tích tam giác EMF < 1/4 diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: ΔABC cân tại A, MF\(\perp\)AC(F\(\in\)AC)
a:
Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔBEM=ΔCFM
b: ta có: ΔBEM=ΔCFM
=>BE=CF và ME=MF
Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC và AB=AC
nên AE=AF
c: Xét ΔEMA vuông tại E và ΔFMA vuông tại F có
MA chung
ME=MF
Do đó: ΔEMA=ΔFMA
=>\(\widehat{EMA}=\widehat{FMA}\)
=>MA là phân giác của góc EMF
Hạ MH vuông góc AB. Trên AB lấy điểm D sao cho MD vuông góc MF, hơn nữa vì MA vuông góc MB => ^AMF = ^BMD (1)( góc có cạnh tương ứng vuông góc)
Tg ABC vuông cân tại A => MA = MB (2) và ^MBD = ^MAF = 45o (3)
Từ (1), (2) ,(3) => tg AMF = tg BMD (g.c.g) => AF = BD (4) và MD = MF (5)
Mặt khác ^EMF = 45o mà ^DMF = 90o => ^DME = EMF = 45o (6)
Từ (5),(6) => tgEMF = tg DME (c.g.c) ( vì có cạnh ME chung) => DE = EF (7)
Từ (4) và (7) => AB = AE + BD + DE = AE + AF + DE > EF + DE = 2DE <=> DE < AB/2 <=> MH.DE/2 < MH.AB/4 <=> S(EMF) = S(DME) < S(AMB)/2 = S(ABC)/4 (đpcm)
Hạ MH vuông góc AB. Trên AB lấy điểm D sao cho MD vuông góc MF, hơn nữa vì MA vuông góc MB => ^AMF = ^BMD (1)( góc có cạnh tương ứng vuông góc)
Tg ABC vuông cân tại A => MA = MB (2) và ^MBD = ^MAF = 45o (3)
Từ (1), (2) ,(3) => tg AMF = tg BMD (g.c.g) => AF = BD (4) và MD = MF (5)
Mặt khác ^EMF = 45o mà ^DMF = 90o => ^DME = EMF = 45o (6)
Từ (5),(6) => tgEMF = tg DME (c.g.c) ( vì có cạnh ME chung) => DE = EF (7)
Từ (4) và (7) => AB = AE + BD + DE = AE + AF + DE > EF + DE = 2DE <=> DE < AB/2 <=> MH.DE/2 < MH.AB/4 <=> S(EMF) = S(DME) < S(AMB)/2 = S(ABC)/4 (đpcm)
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
b: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>ME//BD và ME=BD
=>MEDB là hình bình hành
=>MD cắtEB tại trung điểm của mỗi đường
=>B,K,E thẳng hàng
tu ve hinh :
a, xet tamgiac MBK va tamgiac MCH co :
goc BKM = goc CHM = 90o do MK | AB va MH | AC
tamgiac ABC can tai A (gt) => goc ABC = goc ACB (tc)
MB = MC do M la trung diem cua BC (gt)
=> tamgiac MBK = tamgiac MCH (ch - gn)