K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

a) Đặt \(A=3+\sqrt{3}\)

<=>\(A^3=27+27\sqrt{3}+27+3\sqrt{3}\)

<=>\(A^3=54+30\sqrt{3}\)

<=>\(A=\sqrt[3]{54+30\sqrt{3}}\)

Vậy....

b) mình sửa lại đề nhá:

Tính \(B=\sqrt[3]{54+30\sqrt{3}}+\sqrt[3]{54-30\sqrt{3}}\)

\(B=\sqrt[3]{\left(3+\sqrt{3}\right)^3}+\sqrt[3]{\left(3-\sqrt{3}\right)^3}\)

\(B=3+\sqrt{3}+3-\sqrt{3}=6\)

27 tháng 10 2019

Đặt \(A=\sqrt[3]{54+30\sqrt{3}}+\sqrt[3]{54-30\sqrt{3}}\)

\(=\sqrt[3]{27+27\sqrt{3}+3\sqrt{3}+27}+\sqrt[3]{27-27\sqrt{3}-3\sqrt{3}+27}\)

\(=\sqrt[3]{\left(3+\sqrt{3}\right)^3}+\sqrt[3]{\left(3-\sqrt{3}\right)^3}\)

\(=3+\sqrt{3}+3-\sqrt{3}\)

\(=6\)

Vậy \(A=6\)

23 tháng 10 2017

dạy mik cách viết căn trên máy tính đi mik giải cho

17 tháng 8 2016
Cái đề đọc không được
28 tháng 5 2021

a) (a+1)(ba+1).
b) (x−y)(x+y).

19 tháng 6 2021

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2-1}=2\sqrt{2}-2+2-\sqrt{2}=\sqrt{2}\)

\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)

\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(a-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{1-a}=\dfrac{a+a\sqrt{a}-\sqrt{a}-a}{1-a}=\dfrac{\sqrt{a}\left(a-1\right)}{1-a}=-\sqrt{a}\)

\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)

27 tháng 8 2018

a) \(\frac{x\sqrt[3]{y}+\sqrt[3]{x^2y^2}}{\sqrt[3]{x^2y^2}+y\sqrt[3]{x}}\)

\(=\frac{\sqrt[3]{x^2y}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)}{\sqrt[3]{xy^2}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)}=\sqrt[3]{\frac{x^2y}{xy^2}}=\sqrt[3]{\frac{x}{y}}\)

b) \(\frac{\sqrt[3]{54}-2\sqrt[3]{16}}{\sqrt[3]{54}+2\sqrt[3]{16}}\)

\(=\frac{\sqrt[3]{27.2}-2\sqrt[3]{8.2}}{\sqrt[3]{27.2}+2\sqrt[3]{8.2}}\)

\(=\frac{3\sqrt[3]{2}-4\sqrt[3]{2}}{3\sqrt[3]{2}+4\sqrt[3]{2}}=\frac{-\sqrt[3]{2}}{7\sqrt[3]{2}}=-\frac{1}{7}\)