tìm x,y thuộc Q, biết:
x.y= x-y= x.y (y khác 0) ( x và y đều có giá trị)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy + 3x - 7y = 21 (1)
xy + 3x - 2y = 11 (2)
LẤy (1) - (2) => xy + 3x - 7y - ( xy + 3x - 2y) = 21 - 11 = 10
=> xy + 3x - 7y - xy - 3x + 2y = 10
=> -5y = 10
=> y = -2 Thay vào ta có
x.y +3x - 7y = x. (-2) + 3. x - 7 (-2) = 21
=> -2x + 3x + 14 = 21
=> x = 21 - 14 = 7
Vậy x = 7 ; y = -5
Tick đúng nha you
Từ x + y = x.y = x : y
=> x.y = x : y
=> \(xy-\frac{x}{y}=0\Rightarrow x\left(y-\frac{1}{y}\right)=0\Rightarrow\orbr{\begin{cases}x=0\\y-\frac{1}{y}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y=\frac{1}{y}\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y=\pm1\end{cases}}\)
Nếu x = 0
Khi đó x + y = xy
=> 0 + y = 0.y
=> y = 0 (loại)
Nếu y = 1
=> x + y = xy
<=> x + 1 = x
=> 0x = -1 (loại)
Nếu y = - 1
=> x + y = xy
<=> x - 1 = -x
=> 2x = 1
=> x = 0,5 (tm)
Vậy x = 0,5 ; y = -1
\(x\cdot y=\frac{x}{y}\)
\(y\cdot y=\frac{x}{x}\)
\(y^2=1\)
\(y=\pm\sqrt{1}=\pm1\)
\(x+y=x\cdot y\)
TH1 : thế y = 1
\(x+1=x\cdot1\)
\(x+1=x\)
\(x-x=-1\)
\(0x=-1\left(sai\right)\)
Suy ra vô nghiệm x
TH 2 : Thế y = -1
\(x-1=x\cdot\left(-1\right)\)
\(x-1=-x\)
\(x+x=1\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\) ; y = -1
vì x-y = x.y (gt) \(\Rightarrow\) x = x.y + y = y.(x+1) \(\Rightarrow\) x:y = x+1 (1)
Mà x-y = x:y (gt) (2)
Từ (1) và (2) suy ra: x-y = x+1
x + (-y) = x+1
-y = 1
\(\Rightarrow y=-1\)
Vì x : y = x+1 ( theo (1) )
Suy ra: x : (-1) = x+1 \(\Rightarrow x=-1.\left(x+1\right)\)
\(\Rightarrow x=-x+\left(-1\right)\)
\(\Rightarrow x-\left(-x\right)=-1\)
\(\Rightarrow2x=-1\Rightarrow x=\frac{-1}{2}\)
Vậy x = \(\frac{-1}{2}\); y = -1
thay y=x-2 vào xy=99 có x(x-2)-99=0 => (x-1)2-100=0 nên x=11 hoặc x=-9
vì y<0 nên x<0 do đó thay x=-9 có y=-11 nên x+y=-20
cho hai số x,y thỏa mãn x+y=x.y=x/y, với y khác 0. Tính giá trị biểu thức P=2022x+2021y - Hoc24
\(ĐK:y\ne0\)
\(x+y=\dfrac{x}{y}\Leftrightarrow xy+y^2=x\)
Mà \(xy=x+y\Leftrightarrow x+y+y^2=x\)
\(\Leftrightarrow y\left(y+1\right)=0\Leftrightarrow y=-1\left(y\ne0\right)\\ \Leftrightarrow x-1=\dfrac{x}{-1}=-x\\ \Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(P=2022\cdot\dfrac{1}{2}+2021\left(-1\right)=1011-2021=-1010\)
Bài giải
\(xy=x-y\text{ }\Rightarrow\text{ }x=xy+y=y\left(x+1\right)\)
Suy ra : \(x\text{ : }y=y\left(x+1\right)\text{ : }y=x+1\text{ ( Do y}\ne0\text{ ) }^{\left(1\right)}\)
Theo đề ra : \(x-y=xy=x\text{ : }y\) \(\Leftrightarrow\text{ }x-y=xy=x\text{ : }y=x+1\)
\(x-y=x+1\)
\(y=x-\left(x+1\right)\)
\(y=x-x-1\)
\(y=0-1\)
\(y=-1\)
Thay \(y=-1\) vào \(^{\left(1\right)}\) ta được :
\(x\text{ : }y=x\text{ : }\left(-1\right)=x+1\)
\(x=\left(x+1\right)\left(-1\right)\)
\(x=-x+\left(-1\right)\)
\(x+x=-1\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\) , \(y=1\)
Bài giải
\(xy=x-y\text{ }\Rightarrow\text{ }x=xy+y=y\left(x+1\right)\)
Suy ra : \(x\text{ : }y=y\left(x+1\right)\text{ : }y=x+1\text{ ( Do y}\ne0\text{ ) }^{\left(1\right)}\)
Theo đề ra : \(x-y=xy=x\text{ : }y\) \(\Leftrightarrow\text{ }x-y=xy=x\text{ : }y=x+1\)
\(x-y=x+1\)
\(y=x-\left(x+1\right)\)
\(y=x-x-1\)
\(y=0-1\)
\(y=-1\)
Thay \(y=-1\) vào \(^{\left(1\right)}\) ta được :
\(x\text{ : }y=x\text{ : }\left(-1\right)=x+1\)
\(x=\left(x+1\right)\left(-1\right)\)
\(x=-x+\left(-1\right)\)
\(x+x=-1\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\) , \(y=1\)