Tam giác ABC,góc A=a độ(0 độ<a<90 độ).Phân giác BD,CE của góc B,góc C cắt nhau ở góc O.Tia phân giác của góc ngoài tại B cắt OD ở M,tia phân giác góc ngoài tại C cắt BO ở N
a)Tính góc BOC
b)CMR:góc BMC= góc BNC=\(\frac{a^0}{2}\)
c)Xác định a để góc BDC= góc CEA
Mọi người giúp em nhé
Sửa đề: Tia phân giác của góc ngoài tại B cắt OC ở M
Hướng dẫn:
a) \(\widehat{BOC}=90^o+\frac{a}{2}\)
b) ^BOC là góc ngoài của \(\Delta\)BOM và \(\Delta\)CON
=> \(\widehat{BOC}=\widehat{OMB}+\widehat{OBM}=\widehat{ONC}+\widehat{OCN}\)
=> \(90^o+\frac{a}{2}=\widehat{OMB}+90^o=\widehat{ONC}+90^o\text{}\)( tia phân giác trong và ngoài tại 1 đỉnh tạo vs nhau 1 góc vuông. Em tự cm )
=> \(\frac{a}{2}=\widehat{OMB}=\widehat{ONC}\text{}\)
=> ĐPCM
c) ^CEA là goác ngoài \(\Delta\)BEC => ^CEA = ^EBC + ^ECB = ^ABC + ^ACB : 2 = \(180^o-a-\frac{\widehat{ACB}}{2}\)
Xét \(\Delta\)ODC có ^BOC là góc ngoài \(\Delta\)ODC => ^ODC = ^BOC - ^OCD => ^BDC = \(90^o+\frac{a}{2}-\frac{\widehat{ACB}}{2}\)
^BDC = ^CEA
=> \(180^o-a-\frac{\widehat{ACB}}{2}\)=\(90^o+\frac{a}{2}-\frac{\widehat{ACB}}{2}\)
=> \(\frac{3a}{2}=90^o\Rightarrow a=60^o\)