K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

2 tháng 2 2021

vaidaibangioithe))):

11 tháng 8 2021

vẽ hình cho mình luôn đc ko

 

12 tháng 7 2018

P/s cái hình thì tự vẽ lấy ok :)))))

Ta có tam giác MEH cân suy ra \(\widehat{HEM}=\widehat{MHE}\)

Tam giác DEH cân suy ra \(\widehat{DHE}=\widehat{MHE}\)

Mà \(\widehat{DEH}+\widehat{MHE}=90^0\)

\(\Rightarrow\widehat{HEM}+\widehat{DEH}=90^0\)

\(\Rightarrow\hept{\begin{cases}EM\perp ED\\DN\perp ED\end{cases}\Rightarrow MN//ED}\)

Nên DEMN là hình thang vuông ( đpcm ) 

Nóng rã cả mồ hôi 

12 tháng 7 2018

Mình nói cho bạn các bước nhé

B1: Chứng minh ADEH là hình chữ nhật

B2: Trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền nên EM=MH =1/2 BH, DN=NH =1/2 CH và các tam giác cân EMH,DNH để suy ra góc EMH=góc EHM (1),góc NHD=góc NDH (3)

B3: Gọi O là giao điểm 2 đường chéo của hcn ADEH nên OE=OH tam giác OEH cân rồi góc OEH=góc OHE (2)

B4: Từ (1) và (2) ta được góc MED=góc AHM =90 độ

 Tương tự như bước 3 , ta được tam giác OHD cân nên góc OHD=góc ODH (4)

Từ (3) và (4) suy ra: góc NDE=góc AHN=90 độ

Tứ giác DEMN có: góc MED =góc NDE =90 độ nên là hình thang vuông

Mong bạn hiểu và làm được. Chúc bạn học tốt

5 tháng 2 2021

Xét tứ giác AEHD có: 

^A = 90(tam giác ABC vuông tại A)

^AEH = 90( HE vuông góc AC)^ADH = 90( HD vuông góc AB)

=> AEHD là hình chữ nhật (dhnb)

=> DE = AH (TC hình chữ nhật)

Mà DE cắt AH tại K (gt)

=> K là trung điểm DE và AH (TC hình chữ nhật)

=> KD = KE và KA = KH 

6 tháng 2 2021

thank bạn hihi

4 tháng 4 2023

Cậu ơi, cậu hk lm câu c cho tớ hả :3?

14 tháng 1 2018

A B C D B H Chứng minh:
a) Vì △ABC cân tại A ⇒ AB = AC
Xét △ABH và △ACH có:
AB = AC (cmt)
\(\widehat{BAH}=\widehat{CAH}\) (gt)
AH - cạnh chung
⇒△ABH = △ACH (c.g.c)
⇒ ( tương ứng)
⇒ HB = HC ( tương ứng)
\(\widehat{AHB}+\widehat{AHC}=180^o\) ( kề bù)
\(\widehat{AHB}=\widehat{AHC}\) (cmt)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
⇒ AH ⊥ BC ⇒ AH là đường cao của △ABC
b)
Xét △AHD vuông tại D và △AHE vuông tại E có:
\(\widehat{DAH}=\widehat{EAH}\text{ (gt)}\)
AH - cạnh chung
⇒ △AHD = △AHE ( cạnh huyền - góc nhọn )
⇒ HD = HE ( tương ứng )

14 tháng 1 2018

Cảm ơn