K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2021

Sau vài phút cố gắng thì khẳng định đề bài của em bị sai

NV
18 tháng 9 2021

Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:

\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)

\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)

Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)

Cộng vế:

\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)

\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)

25 tháng 10 2018

khong lay so 1 nho nha

25 tháng 10 2018

\(\sqrt{x+2+2\sqrt{x+1}}+\sqrt{x+2-2\sqrt{ }x+1}=\frac{x+5}{2}\)\(\frac{x+5}{2}\)

8 tháng 1 2018

a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :

Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).

8 tháng 1 2018

Sao ko hiện làm lại :

\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8 

8 tháng 1 2018

a) ĐK \(x\ge1\)

với \(x\ge1\Rightarrow\hept{\begin{cases}\sqrt{x-1}\ge0\\\sqrt{5+x}\ge\sqrt{6}\end{cases}\Rightarrow\sqrt{x-1}+\sqrt{5+x}\ge\sqrt{6}}\)

dâu = xảy ra <=>x=1

b)Dặt ...=A

Ta có A=\(\frac{2}{9}x+\frac{1}{2x}+\frac{2}{9}y+\frac{1}{2y}+\frac{7}{9}\left(x+y\right)\)

Áp dụng BĐT cô-si, ta có \(\frac{2}{9}x+\frac{1}{2x}\ge\frac{2}{3}\)

tương tự có \(\frac{2}{9}y+\frac{1}{2y}\ge\frac{2}{3}\)

Mà \(x+y\ge3\Rightarrow\frac{7}{9}\left(x+y\right)\ge\frac{7}{3}\)

=>\(A\ge\frac{2}{3}+\frac{2}{3}+\frac{7}{3}=\frac{11}{3}\)

Dấu = xảy ra <=>\(x=y=\frac{3}{2}\)

^_^

8 tháng 1 2018

b) Nó ko > = 11/3 =))

30 tháng 1 2016

Ta có: \(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}\ge0;\left|x+y+z\right|\ge0\)

Mà theo đề: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)

=> \(\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{\left(y+\sqrt{2}\right)^2}=\left|x+y+z\right|=0\)

=> \(x-\sqrt{2}=y+\sqrt{2}=x+y+z=0\)

=> \(x=\sqrt{2};y=-\sqrt{2};z=0\).

NV
5 tháng 12 2020

Đặt \(\left\{{}\begin{matrix}x+\sqrt{1+x^2}=a>0\\y+\sqrt{1+y^2}=b>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{1+x^2}=a-x\\\sqrt{1+y^2}=b-y\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1+x^2=a^2-2ax+x^2\\1+y^2=b^2-2by+y^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{a^2-1}{2a}\\y=\frac{b^2-1}{2b}\end{matrix}\right.\)

Thay vào biểu thức điều kiện đề bài:

\(\left(\frac{a^2-1}{2a}+\sqrt{1+\left(\frac{b^2-1}{2b}\right)^2}\right)\left(\frac{b^2-1}{2b}+\sqrt{1+\left(\frac{a^2-1}{2a}\right)^2}\right)=1\)

\(\Leftrightarrow\left(\frac{a^2-1}{2a}+\sqrt{\left(\frac{b^2+1}{2b}\right)^2}\right)\left(\frac{b^2-1}{2b}+\sqrt{\left(\frac{a^2+1}{2a}\right)^2}\right)=1\)

\(\Leftrightarrow\left(\frac{a^2-1}{2a}+\frac{b^2+1}{2b}\right)\left(\frac{b^2-1}{2b}+\frac{a^2+1}{2a}\right)=1\)

Với chú ý rằng: \(1=\frac{4ab}{4ab}=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{4ab}\)

\(\Rightarrow\left[\frac{\left(a+b\right)}{2}-\left(\frac{1}{2a}-\frac{1}{2b}\right)\right]\left[\frac{a+b}{2}+\left(\frac{1}{2a}-\frac{1}{2b}\right)\right]=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{4ab}\)

\(\Leftrightarrow\left(a+b\right)^2-\left(\frac{1}{a}-\frac{1}{b}\right)^2=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{ab}\)

\(\Leftrightarrow\left(a+b\right)^2-\frac{\left(a-b\right)^2}{\left(ab\right)^2}=\frac{\left(a+b\right)^2-\left(a-b\right)^2}{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\left(1-\frac{1}{ab}\right)+\frac{\left(a-b\right)^2}{ab}\left(1-\frac{1}{ab}\right)=0\)

\(\Leftrightarrow\left(1-\frac{1}{ab}\right)\left[\left(a+b\right)^2+\frac{\left(a-b\right)^2}{ab}\right]=0\)

\(\Leftrightarrow1-\frac{1}{ab}=0\)

\(\Leftrightarrow ab=1\) (đpcm)