Bài 2 :(1/9)^2005 . 9^2005 . 96^2 : 24^2
Bài 3 : Tìm các số a,b biết : a/2=b/3 và a+b = -15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{15}{34}+\frac{7}{21}+\frac{19}{34}-\frac{20}{15}+\frac{3}{7}\)
\(=>\left(\frac{15}{34}+\frac{19}{34}\right)+\left(\frac{7}{21}+\frac{3}{7}\right)-\frac{20}{15}\)
\(=>1+\frac{16}{21}-\frac{20}{15}\)
\(=>\frac{37}{21}-\frac{20}{15}\)
\(=>\frac{3}{7}\)
\(b,12-8\cdot\left(\frac{3}{2}\right)^3\)
\(=>12-8\cdot\frac{27}{8}\)
\(=>12-27\)
\(=>-15\)
\(c,\left(\frac{1}{9}\right)^{2005}\cdot9^{2005}-96^2:24^2\)
\(=>\left(\frac{1^{2005}^{ }}{9^{2005}}\cdot9^{2005}\right)-\left(96^2:24^2\right)\)
\(=>\left(1^{2005}\right)-16\)
\(=>1-16\)
\(=>-15\)
a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\)
8 .x + 1 . x = 990
x . [ 8 +1 ] = 990
x . 9 = 990
x = 990 : 9
x = 110
1: a chia 3 dư 2 nên a=3k+2
4a+1=4(3k+2)+1
=12k+8+1
=12k+9=3(4k+3) chia hết cho 3
2:
a: 36 chia hết cho 3x+1
=>\(3x+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
mà x là số tự nhiên
nên 3x+1 thuộc {1;4}
=>x thuộc {0;1}
b: 2x+9 chia hết cho x+2
=>2x+4+5 chia hết cho x+2
=>5 chia hết cho x+2
=>x+2 thuộc {1;-1;5;-5}
=>x thuộc {-1;-3;3;-7}
mà x thuộc N
nên x=3
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222q22222222222222222222222222222222222222222222222222222222222222222222222222222222222222
bai 3
\(A=\frac{10^{2004}+1}{10^{2005}+1}\)
\(10A=\frac{10^{2004}+10}{10^{2005}+1}\)
\(10A=1\frac{9}{10^{2005}+1}\)
\(B=\frac{10^{2005}+1}{10^{2006}+1}\)
\(10B=\frac{10^{2005}+10}{10^{2006}+1}\)
\(10B=1\frac{9}{10^{2006}+1}\)
Vì \(1\frac{9}{10^{2005}+1}>1\frac{9}{10^{2006}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
bai 4
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^8}\)
\(\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+....+\frac{1}{3^9}\)
\(A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^9}\)
Bài 1) Tự tính
Bài 2) a) 3x + 27 = 9
=> 3x = 9 - 27
=> 3x = -18
=> x = -18 : 3
=> x = -6
b) 2x + 12 = 3(x - 7)
=> 2x + 12 = 3x - 21
=> 2x - 3x = 21 - 12
=> -x = 9
=> x = -9
c) 2x2 - 1 = 49
=> 2x2 = 49 + 1
=> 2x2 = 50
=> x2 = 50 : 2
=> x2 = 25
=> x2 = 52
=> \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
Bài 3a)
Ta có: A = (-a - b + c) - (-a - b - c)
=> A = -a - b + c + a + b + c
=> A = (-a + a) - (b - b) + (c + c)
=> A = 2c
b) Với c = -2 thay vào biểu thức
ta được : A = 2 . (-2)
=> A = -4
hoặc với a = 1; b = -1, c = -2 thay vào biểu thức
rồi tính
Bài 4: Ta có: 6a + 1 = 2(3a - 1) + 3
Do 3a - 1 \(⋮\)3a - 1 => 2(3a - 1) \(⋮\)3a - 1
Để 6a + 1 \(⋮\)3a - 1 thì 3 \(⋮\)3a - 1 => 3a - 1 \(\in\)Ư(3) = {1; 3; -1; -3}
Lập bảng:
tự lập