Cho psố P=2019/x-2020. Tìm số nguyên x để P có gtrị lớn nhất. Tìm gtrị lớn nhất đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=2+\frac{-1}{n+3}\)
Để\(A\inℤ\Leftrightarrow\frac{-1}{n+3}\inℤ\)
\(\Leftrightarrow n+3\inƯ\left(-1\right)=\left\{\pm1\right\}\)
Vậy\(n\in\left\{-2;-4\right\}\)
\(B=\frac{2020}{x}-2019\) (ĐKXĐ: \(x\ne0\))
B đạt GTLN <=> \(\frac{2020}{x}\)là số dương (\(\frac{2020}{x}>0\))
<=> \(x>0\)(vì \(2020>0\)), mà \(x\in Z\)=> \(x\ge1\)
<=> \(\frac{2020}{x}\le\frac{2020}{1}\)
<=> \(\frac{2020}{x}-2019\le2020-2019=1\)
Dấu "=" xảy ra <=> x = 1 (tmđkxđ)
Vậy GTLN của B là 1, tại x = 1.
Bạn hỏi câu này bên Hoidap247 đúng không nè? :)
a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)
Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy GTLN của P = 2019 tại \(x=-1\).
b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)
\(\Rightarrow2020-\left|2019-x\right|\le2020\)
Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)
\(\Rightarrow2019-x=0\)
\(\Rightarrow x=2019\)
Vậy GTLN của Q = 2020 tại \(x=2019\).
a) \(P=2019-\left(x+1\right)^{2020}\)
Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)
Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)
<=> x+1=0
<=> x=-1
Vậy MaxA=2019 đạt được khi x=-1
b) \(Q=2020-\left|2019-x\right|\)
Ta có \(\left|2019-x\right|\ge0\forall x\)
\(\Rightarrow2020-\left|2019-x\right|\ge2020\)
Dấu "=" xảy ra <=> |2019-x|=0
<=> 2019-x=0
<=> x=2019
Vậy MaxQ=2020 đạt được khi x=2019
\(A=\dfrac{x-1}{2x}\)
⇔\(\dfrac{1}{A}=\dfrac{2x}{x-1}\)
⇔\(\dfrac{1}{A}=2+\dfrac{2}{x-1}\)
Để \(\dfrac{1}{A}\) nhận gtri nguyên thì \(\dfrac{2}{x-1}\) nhận gtri nguyên
⇔x-1 là ước của 2 =\(\left\{\mp1;\mp2\right\}\)
*x-1=1
⇔x=2(TM)
*x-1=-1
⇔x=0(TM)
*x-1=2
⇔x=3(TM)
*x-1=-2
⇔x=-1(TM
Vậy x ϵ {1;-1;2;-2} thì \(\dfrac{1}{A}\) nhận gtri nguyên
a, \(A=\frac{n-2}{n+3}\) là phân số \(\Leftrightarrow n+3\ne0\)
\(\Leftrightarrow n\ne-3\)
b, \(A=\frac{n-2}{n+3}\) là số nguyên \(\Leftrightarrow n-2⋮n+3\)
\(n-2⋮n+3\)
\(\Rightarrow n+3-5⋮n+3\)
\(n+3⋮n+3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)\)
\(\Rightarrow n+3\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-8;2\right\}\)
Để E có giá trị nguyên thì \(2x-6⋮2-x\)
\(< =>-\left(4-2x\right)-2⋮2-x\)
Do \(2\left(2-x\right)⋮2-x\)nên \(2⋮2-x\)
Khi đó : \(2-x\inƯ\left(2\right)=\left\{2;1;-1;-2\right\}\)
Tương đương : \(x\in\left\{0;1;3;4\right\}\)
Vậy để E nguyên thì \(x\in\left\{0;1;3;4\right\}\)
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Để P đạt GTLN
=> x - 2020 nhỏ nhất và x - 2020 > 0 ; x - 2020 \(\ne\)0
=> x - 2020 = 1
=> x = 2021
=> GTLN Của P = \(\frac{2019}{2021-2020}=\frac{2019}{1}=2019\)
Vậy GTLN của P là 2019 khi x = 2021
x=2021 để P có giá trị lớn nhất . Giá trị lớn nhất là 2019