K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2015

gọi d là UC của n+3 và 2n+5  

=> d là ước của 2(n+3) = 2n+6 = 2n+5 + 1

 mà d là ước của 2n+5 => d là ước của 1

vay d = 1 

15 tháng 12 2016

Gọi ƯC(n+3,2n+5) là d

Ta có: n+3 ⋮ d => 2(n+3) ⋮ d => 2n+6 ⋮ d

2n+5 ⋮ d

=> 2n+6 - (2n+5) ⋮ d

=> 2n+6 - 2n - 5 ⋮ d

=> 1 ⋮ d => d = 1

=>ƯC(n+3,2n+5) = 1

15 tháng 12 2016

Gọi d thuộc ước chung của n+3 ; 2n+5 ( d thuộc Z )
=> + ) \(n+3⋮d\) \(\Rightarrow\) 2.(n+3) \(⋮d\)
+) 2n+5 \(⋮\)d
=> 2(n+3) - (2n +5) \(⋮d\)
<=> (2n+6 -2n-5) \(⋮d\)
<=> 1 \(⋮d\) => d thuộc { 1 : -1 }

Vậy ƯC (n+3 và 2n+5) = -1 và 1

5 tháng 11 2015

1,Goi d la UC cua n+3va2n+5

Suy ra d la uoc cua 2(n+3) = 2n+6=2n+5+1

ma d la uoc cua 2n+5 suy ra d la uoc cua 1Suy ra d=1

5 tháng 11 2015

Gọi d là ƯCLN ( n + 3 ; 2n + 5 )

Ta có : n + 3 cha hết cho d và 2n + 5 chia hết cho d

\(\Rightarrow\)( n + 3 ) - ( 2n + 5 ) chia hết cho d

\(\Rightarrow\)( 2n + 6 ) - ( 2n + 5 ) chia hết cho d

\(\Rightarrow\)1 chia hết cho d

Vậy ƯCLN ( n + 3 ; 2n + 5  = 1

5 tháng 11 2015

Gọi d là ƯCLN ( n + 3; 2n + 5 )

Ta có : n + 3 chia hết cho d; 2n + 5 chia hết cho d

\(\Rightarrow\)( n + 3 ) - ( 2n + 5 ) chia hết cho d

= (2n + 6 ) - ( 2n + 5 ) chia hết cho d

\(\Rightarrow\)1 chia hết cho d

Vậy ƯCLN ( n + 3; 2n + 5 ) = 1

 

26 tháng 11 2017

a. Gọi ƯC(3n+5;n+2) là d

Ta có •3n+5 chia hết cho d

•n+2 chia hết cho d

=> 3(n+2) chia hết cho d

=> 3n+6chia hết cho d

=> (3n+6)-(3n+5) chia hết cho d

=>3n+6-3n-5 chia hết cho d

=> 1 chia hết cho d => d=1

Vậy ƯC(3n+5;n+2) =1

b. Gọi ƯC(n+2;2n+3) là d

Ta có • n+2 chia hết cho d

=> 2n+4 chia hết cho d

•2n+3 chia hết cho d

=> (2n+4)-(2n+3) chia hết cho d

=> 1 chia hết cho d=> d=1

=> ƯC(n+2;2n+3) =1

Vậy n+2 và 2n+3 là 2 số nguyên tố cùng nhau

20 tháng 10 2017

bạn ơi bài làm như sau :

mình là đội tuyển toán lớp 7 rùi nhưng nhớ bài này lém : 
Gọi d thuộc ước chung của n+3 ; 2n+5 ( d thuộc Z ) 
=> + ) n+3 chia hết cho d hay 2.(n+3) chia hết cho d 
+) 2n+5 chia hết cho d 
=> 2(n+3) - (2n +5) chia hết cho d 
<=> 2n+6 -2n-5 chia hết cho d 
<=> 1 chia hết cho d => d thuộc { 1 : -1 } 

Nhớ sử dụng kí hiệu nhá

20 tháng 10 2017

bài này dành cho các bạn đội tuyển nhé

10 tháng 11 2020

1. Gọi d là ước chung của n+3 và 2n+5

Ta có: n+3 \(⋮\)d , 2n+5\(⋮d\)

=> (2n+6)-(2n+5) chia hết cho d=> 1 chia hết cho d

Vậy ƯC của n+3 và 2n+5 là 1

2. giả sử 4 là ƯC của n+1 và 2n+5

Ta cs: n+1 \(⋮\)4 , 2n+5\(⋮\)4

=> (2n+5)-(2n+2) chia hết cho 4=> 3 chia hết cho 4(vô lý)

Vậy số 4 không thể là ƯC của n+1 và 2n+5.

3 tháng 12 2020

Bạn ghét những đứa đặt tên dài, cậu có thể giải thích tại sao ở câu 1, n + 3=2n+6 được chứ, cả câu 2 n+1=2n+5 nữa. Cảm ơn!

9 tháng 11 2016

Gọi d là UCLN(2n+3,3n+5) 

\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d = 1

=>UCLN(2n+3,3n+5) = 1

=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Gọi d là UCLN(5n+6,8n+7)

\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)

\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1;13\right\}\)

Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)

=> UCLN(5n+6,8n+7) = 1

9 tháng 11 2016

B1) Gọi d là UCLN của (2n+3) và (3n+5)

Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d

=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1

Vậy chúng là 2 số nguyên tố cùng nhau.

B2) Cách giải tương tự.