K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2015

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

=>\(\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)

=>\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a}{b}.\frac{c}{d}\)

=>\(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)             ( theo t/c dãy tỉ số bằng nhau)

=>\(\frac{ab}{bc}=\frac{a^2+c^2}{b^2+d^2}\)                          (đpcm)

29 tháng 11 2015

Hình như (a2)/(b2) và (c2)/(d2) không bằng (a/b).(c/d) thì phải.

10 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\),đặt \(\frac{a}{c}=\frac{b}{d}=k=>a=ck;b=dk\)

Ta có: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}=\frac{c^2k^2+c^2}{d^2k^2+d^2}=\frac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{c^2}{d^2}=\left(\frac{c}{d}\right)^2\left(1\right)\)

\(\frac{a.c}{b.d}=\frac{ck.c}{dk.d}=\frac{c^2k}{d^2k}=\frac{c^2}{d^2}=\left(\frac{c}{d}\right)^2\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a^2+c^2}{b^2+d^2}=\frac{a.c}{b.d}\left(đpcm\right)\)
 

\(\frac{a}{b}=\frac{c}{d}\)

\(=>\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\)

\(=\frac{a.c}{b.d}\)

Y
23 tháng 5 2019

+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)

câu cuối lm tương tự

7 tháng 9 2019

Câu hỏi của Nguyễn Ngọc Thảo Linh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé! 

2 tháng 12 2019

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)(1)

Áp dụng tính chất của dãy tỉ số bằng nhau cho ( 1 ) ta có :

\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)

=> Điều phải chứng minh

19 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a.c}{b.d}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}=\frac{a^2+c^2}{b^2+d^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

9 tháng 9 2017

ta có: .\(\frac{a.c}{b.d}\)\(\frac{^{a^2}}{b^2}\)\(\frac{a.c}{b.d}\)=\(\frac{c^2}{d^2}\)vậy \(\frac{a.c.b^2}{b.d}\)=  a2    (1)  và  \(\frac{a.c.d^2}{b.d}\)=   c2  (2)

(1)+(2) suy ra \(\frac{a.c}{b.d}\)=   \(\frac{a^2+c^2}{b^2+d^2}\)

12 tháng 2 2018

Ta có: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3+2ab+2ac+2bc}{b^3+c^3+d^3+2bc+2bd+2cd}\)

4 tháng 8 2016

Ta đặt: a/b = a/d =k

  => a = b.k, c=d.k

 Ta có: a2 + a.c/c2 - a.c=b2 + b.d/d2 - b.d

 Vế trái:  => (b.k)2 + (b.k)(d.k)/(d.k)- (b.k)(d.k)

  => b2.k2 + k(b.d)/d2.k2 - k.(b.d)

 Ta lược bỏ các chữ giống nhau, ta được:

  => b2/d2

 Vế phải: b2 +b.d/d2 - b.d

 Ta cũng lược bỏ những chữa giống nhau ta được:

  => b2/d2 

Vậy a2 +a.c/c2 + a.c = b2 + b.d/d2 - b.d