K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

\(12^8\cdot9^{12}\)

\(=\left(2^2\cdot3\right)^8\cdot\left(3^2\right)^{12}\)

\(=\left(2^2\right)^8\cdot3^8\cdot3^{24}\)

\(=2^{16}\cdot3^{32}\)

\(=2^{16}\cdot\left(3^2\right)^{16}\)

\(=\left(2\cdot3^2\right)^{16}\)

\(=18^{16}\)

9 tháng 11 2017

128.912 = 1816

Ta có: 128.912 = (4.3)8.912 =48.38.912 =(22)8.(32)4.912

= 216.94.912 = 216.916= (2.9)16 = 1816

Vế trái bằng vế phải nên đẳng thức được chứng minh

25 tháng 9 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

10 tháng 8 2019

Đặt vế trái bằng S n . Kiểm tra với n = 1 hệ thức đúng.

Giả sử đã có Giải sách bài tập Toán 11 | Giải sbt Toán 11 với k ≥ 1.

Ta phải chứng minh Giải sách bài tập Toán 11 | Giải sbt Toán 11

Thật vậy 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

3 tháng 12 2018

Giải bài tập Toán 11 | Giải Toán lớp 11

15 tháng 3 2017

+ Với n = 1, ta có:

VT = 3 – 1 = 2

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ VT = VP

⇒ (1) đúng với n = 1

+ Giả sử (1) đúng với n = k ≥ 1 nghĩa là:

2 + 5 + 8 + …+ (3k – 1) = k(3k + 1)/2. (*)

Ta cần chứng minh (1) đúng với n = k + 1, tức là :

Giải bài tập Đại số 11 | Để học tốt Toán 11

Thật vậy :

Ta có :

Giải bài tập Đại số 11 | Để học tốt Toán 11

17 tháng 6 2019

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

* Với n = 1, ta có: 2 - 1 2 = 9 - 8

* Với n = 2, ta có:  3 - 2 2 = 25 - 24

* Với n = 3, ta có:  4 - 3 2 = 49 - 48

* Với n = 4, ta có:  5 - 4 2 = 81 - 80

8 tháng 8 2018

Kiểm tra với n = 1

Giả sử đã cho Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta cần chứng minh

Giải sách bài tập Toán 11 | Giải sbt Toán 11

bằng cách tính

Giải sách bài tập Toán 11 | Giải sbt Toán 11

10 tháng 9 2017

Đặt vế trái bằng S n

Với n = 1 vế trái chỉ có một số hạng bằng 1, vế phải bằng 1

Giả sử đã có Giải sách bài tập Toán 11 | Giải sbt Toán 11 với k ≥ 1. Ta phải chứng minh

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Thật vậy, ta có

S k   +   1   =   S k   +   2 k   +   1   -   1 2   =   S k   +   2 k   +   1 2

Giải sách bài tập Toán 11 | Giải sbt Toán 11