K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\\ \Leftrightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow x^3=18+3x\sqrt[3]{81-80}=18-3x\\ \Leftrightarrow x^3-3x=18\\ y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\\ \Leftrightarrow y^3=6+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\right)\\ \Leftrightarrow y^3=6+3y\sqrt[3]{9-8}=6+3y\\ \Leftrightarrow y^3-3y=6\\ \Leftrightarrow P=x^3+y^3-3\left(x+y\right)+1993\\ P=x^3+y^3-3x-3y+1993=18+6+1993=2017\)

28 tháng 9 2021

Áp dụng: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab\left(a+b\right)\)

\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow x^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)

\(=18+3\sqrt[3]{81-80}.x=18+3x\)

\(y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\)

\(\Rightarrow y^3=3-2\sqrt{2}+3+2\sqrt{2}+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\right)\)

\(=6+3\sqrt[3]{9-8}y=6+3y\)

\(P=x^3+y^3-3\left(x+y\right)+1993\)

\(=18+3x+6+3y-3x-3y+1993=2017\)

18 tháng 3 2016

a)y2 = 7 => y = \(\sqrt{7}hoặc-\sqrt{7}\)

Nếu y = \(\sqrt{7}\) thì :

x2y3 = 5 . y.y

x2y3 = 5.7.\(\sqrt{7}\) = 35\(\sqrt{7}\)

Nếu y = -\(\sqrt{7}\)  thì :

x2y3 = 5.7. (-\(\sqrt{7}\)) = -35\(\sqrt{7}\)

b) x2y= 5.7 = 35

x6y6 = (x2y2)3 = 353 = 42875

c) làm tương tự câu (a).  Chia x làm 2 trường hợp bằng căng 5 hoặc cặng 5 rồi thế vô tính nhé bạn!

21 tháng 10 2020

x3  + y3 - 3(x +y) +2020 nha các cậu

21 tháng 10 2020

Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow\hept{\begin{cases}a^3+b^3=18\\ab=1\end{cases};a+b=x}\)

Ta có: \(x=a+b\Leftrightarrow x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)\(\Rightarrow x^3=18+3x\Leftrightarrow x^3-3x=18\)(1)

Tương tự: Đặt \(c=\sqrt[3]{3+2\sqrt{2}},d=\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow\hept{\begin{cases}c^3+d^3=6\\cd=1\end{cases};c+d=y}\)

Ta có: \(y=c+d\Leftrightarrow y^3=\left(c+d\right)^3=c^3+d^3+3cd\left(c+d\right)\)\(\Rightarrow y^3=6+3y\)

\(\Leftrightarrow y^3-3y=6\)(2)

Từ (1) và (2) suy ra \(A=x^3-3x+y^3-3y+2020=18+6+2020=2048\)

12 tháng 7 2016

1./ \(x+y=3\Rightarrow\left(x+y\right)^3=27\Rightarrow x^3+y^3+3xy\left(x+y\right)=27\Rightarrow x^3+y^3+3\cdot2\cdot3=27.\)

\(\Rightarrow x^3+y^3=9\)

2./ \(\left(x+3\right)\left(x^2-3x+3^2\right)-x^3-2x-4=0\)

\(\Leftrightarrow x^3+27-x^3-2x-4=0\Leftrightarrow2x=23\Leftrightarrow x=\frac{23}{2}\)

12 tháng 7 2016

1/ \(x+y=3\)

\(\Rightarrow\left(x+y\right)^2=9\)

\(\Rightarrow x^2+2xy+y^2=9\)

\(\Rightarrow x^2+4+y^2=9\)

\(\Rightarrow x^2+y^2=5\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.1=3\)