(a-b)(a^2+3ab+b^2)+(a+b)^3+ab(b-a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2
b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3
c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3
e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3
g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2
\(\left(a-b\right)\left(a^2+3ab+b^2\right)+\left(a+b\right)^3+ab\left(b-a\right)\)
\(=\left(a-b\right)\left(a^2+3ab+b^2-ab\right)+\left(a+b\right)^3\)
\(=\left(a-b\right)\left(a+b\right)^2+\left(a+b\right)^3=\left(a+b\right)^2\left(a-b+a+b\right)=2a\left(a+b\right)^2\)
\(\left(a-b\right)\left(a^2+3ab+b^2\right)+\left(a+b\right)^3+ab\left(b-a\right)\)
\(=\left(a-b\right)\left(a^2+3ab-ab+b^2\right)+\left(a+b\right)^3\)
\(=\left(a-b\right)\left(a^2+2ab+b^2\right)+\left(a+b\right)^3\)
\(=\left(a-b\right)\left(a+b\right)+\left(a+b\right)^3\)
\(=\left(a+b\right)^2\left(a+b+a-b\right)\)
\(=\left(a+b\right)^2.2a\)
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
2
Ta có:
VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)
=a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)
=a3+b3=VT(dpcm)
1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)
a) (x+a).(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab
b)(a+b+c)(a2+b2+c2-ab-bc-ca)
=a3+ab2+ac2-a2b-abc-a2c+a2b+b3+bc2-ab2-b2c-ac2+a2c+b2c+c3-abc-bc2-ac2
=a3+b3+c3-3ab
\(\left(a-b\right)\left(a^2+3ab+b^2\right)+\left(a+b\right)^3+ab\left(b-a\right)\)
\(\Leftrightarrow2a^2+4a^2b+2ab^2\)