K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

E= \(\frac{x+y}{x-y}\)

=> \(E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\)\(\frac{x^2+y^2+2xy}{x^2+y^2-2xy}\)\(\frac{2x^2+2y^2+4xy}{2x^2+2y^2-4xy}\)

=> E^2 = \(\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}\)= 9

=> E = 3

2x2+2y2=5xy

<=>2x2-5xy+2y2=0

<=>(2x2-4xy)-(xy-2y2)=0

<=>2x(x-2y)-y(x-2y)=0

<=>(x-2y).(2x-y)=0

<=> (x-2y)=0 hoặc 2x-y=0

Nếu x-2y=0 =>x=2y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{2y+y}{2y-y}\)=\(\frac{3y}{y}\)=3

Nếu 2x-y=0 =>2x=y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{x+2x}{x-2x}\)=\(\frac{3x}{-1x}\)= -3

7 tháng 3 2020

2x^2 + 2y^2 = 5xy

<=> 2x^2 + 2y^2 - 5xy = 0

<=> 2x^2  - 4xy + 2y^2 - xy  = 0

<=> 2x(x - 2y) - y(x - 2y) = 0

<=> (2x - y)(x - 2y) = 0

<=> 2x = y hoặc x = 2y

thay vào là xong

16 tháng 8 2015

2x2+2y2=5xy

<=>2x2-5xy+2y2=0

<=>(2x2-4xy)-(xy-2y2)=0

<=>2x(x-2y)-y(x-2y)=0

<=>(x-2y)(2x-y)=0

<=> x-2y=0 hoặc 2x-y=0

*)Nếu x-2y=0=>x=2y

=>E=\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)

*)Nếu 2x-y=0=>2x=y

=>E=\(\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)

21 tháng 5 2018

Ta có: x>y>0

\(\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}}\)

\(\Rightarrow E=\frac{x+y}{x-y}>0\)

Ta có : E\(=\frac{x+y}{x-y}\)

\(\Rightarrow E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{2\left(x^2-2xy+y^2\right)}=\frac{2x^2+4xy+2y^2}{2x^2-4xy+2y^2}\)\(=\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}=9\)

\(\Rightarrow E=\sqrt{9}\)( do E>0)

\(\Leftrightarrow E=3\)

19 tháng 10 2018

\(\dfrac{x^2+y^2}{xy}=\dfrac{5}{2}\Leftrightarrow2x^2+2y^2-5xy=0\)

\(\Leftrightarrow2x^2+2y^2-4xy-xy=0\)

\(\Leftrightarrow\left(2x^2-xy\right)-\left(4xy-2y^2\right)=0\)

\(\Leftrightarrow x\left(2x-y\right)-2y\left(2x-y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)=0\)

Ta có: \(x>y>0\Leftrightarrow x+x>y+0\Leftrightarrow2x>y\Leftrightarrow2x-y>0\)

Vậy \(x-2y=0\Leftrightarrow x=2y\)

\(E=\dfrac{3x+2y}{2x-3y}=\dfrac{6y+2y}{4y-3y}=\dfrac{8y}{y}=8\)

18 tháng 2 2018

\(A=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x+y\right)^2+4xy}{\left(x+y\right)^2}=\frac{2.2012^2+4xy}{2012^2}\)

\(\le\frac{2.2012^2+4.\frac{\left(x+y\right)^2}{4}}{2012^2}=\frac{2.2012^2+2012^2}{2012^2}=\frac{3.2012^2}{2012^2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1006\)

18 tháng 2 2018

anh hùng giải thích cho em cái chỗ  \(\frac{4.\left(x+y\right)^2}{4}\) với

28 tháng 9 2016

mk không bít

28 tháng 9 2016

ai đây