K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

nhớ tách câu ra nha lộn xà ngầu hết lên

1. x+7>x+5

2. x-3<x+7

3. x+10>x+7

1. \(x+7=x+5+2>x+5\)

2. \(x-3=x+7-10< x+7\)

3. \(x+10=x+7+3>x+7\)

\(\Rightarrow\) đpcm

24 tháng 9 2021

\(1,A=\left(3x+7\right)\left(2x+3\right)-\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\\ =6x^2+23x+21-2x-3-6x^2-23x+55\\ =73-2x\left(đề.sai\right)\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ 2,\\ a,\Leftrightarrow30x^2+18x+3x-30x^2=7\\ \Leftrightarrow21x=7\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\\ \Leftrightarrow79x=79\Leftrightarrow x=1\\ c,\Leftrightarrow\left(x+5\right)\left(x^2+3x+2\right)-x^3-8x^2=27\\ \Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\\ \Leftrightarrow17x=17\Leftrightarrow x=1\)

\(d,\Leftrightarrow7x-2x^2-3+x^2+x-6=-x^2-x+2\\ \Leftrightarrow9x=11\Leftrightarrow x=\dfrac{11}{9}\)

24 tháng 4 2020

Cảm ơn bạn nhé

31 tháng 8 2016

Đặt A = 3x + 5y và B = x + 4y 

Theo bài ra ta có:  3B - A = (3x + 12y) - (3x - 5y) = 7y chia hết cho 7 

Nếu A chia hết cho 7 thì 3B cũng chia hết cho 7 

=> B chia hết cho 7 

Nếu B chia hết cho 7 => 3B chia hết cho 7 => A chia hết cho 7 ( Theo t/c chia hết của 1 tổng) 

31 tháng 8 2016

giả sử :

      3x+5y chia hết 7

=> 5(3x+5y) chia hết 7 (5,7)=1

=>15x+25y chia hết 7

=>(14x + 21y) + (x+4y)

mà 14x + 21y chia hết 7 => 3x+5y chia hết cho 7 <=> x+4y chia hết 7

10 tháng 7 2019

Áp dụng bđt AM-GM\(3\left(3x-2\right)^2+\frac{8x}{y}=3\left(9x^2-12x+4\right)+\frac{8x}{y}\)

\(=27x^2-36x+12+\frac{8x}{y}=27x^2-24x+12y+\frac{8x}{y}\)

\(=\left(24x^2+4y+\frac{16x}{3y}\right)+\left(3x^2+8y+\frac{8x}{3y}\right)-24x\)

\(\ge3\sqrt[3]{24x^2.4y.\frac{16x}{3y}}+\left(3x^2+8y+\frac{8x}{3y}\right)-24x=3x^2+8y+\frac{8x}{3y}\)

\(=\left(3x^2+\frac{y}{2}+\frac{2x}{3y}\right)+\left(\frac{15}{2}y+\frac{2x}{y}\right)\ge3\sqrt[3]{3x^2.\frac{y}{2}.\frac{2x}{3y}}+\left(\frac{15}{2}y+\frac{2x}{y}\right)=3x+\frac{15y}{2}+\frac{2x}{y}\)

\(=3x+\frac{15y}{2}+\frac{2x}{y}+2-2=3x+\frac{15y}{2}+\frac{2}{y}-2\)

\(=\left(3x+3y\right)+\left(\frac{9}{2}y+\frac{2}{y}\right)-2\ge3+2\sqrt{\frac{9y}{2}.\frac{2}{y}}-2=3+6-2=7\)

\("="\Leftrightarrow x=\frac{1}{3};y=\frac{2}{3}\)

26 tháng 9 2020

\(A=5-8x-x^2=-x-8x-16+21=-\left(x-4\right)^2+21\le21\)

Chưa thể cm được

\(B=3x^2+3x+7=3x^2+3x+\frac{3}{4}+\frac{25}{4}=3\left(x+\frac{1}{2}\right)^2+\frac{25}{4}\ge\frac{25}{4}>0\)

=> Đpcm

26 tháng 9 2020

           Bài làm :

\(a\text{)A=}5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16\right)+21=-\left(x+4\right)^2+21\)

Vì -(x+4)2 ≤ 0 với mọi x

=> -(x+4)2 + 21 ≤ 21

=> Không thể khẳng định được A<0 bạn nhé

\(\text{b)}3x.x+3+7=3x^2+10\)

Vì x2 ≥ 0 với mọi x

=> 3x2 ≥ 0 với mọi x

=> 3x2 + 10 ≥ 10 > 0 với mọi x

=> Điều phải chứng minh

12 tháng 11 2017

khó quá à

Chỉ là cảm thấy dài