Cho Parabol (P): y=x2-2x-3.Tìm m để d: y=x+m cắt (P) tại 2 điểm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-\left(m-2\right)x-3=0\)
\(\Delta=\left(m-2\right)^2-4\left(-3\right)=\left(m-2\right)^2+12>0\)
Vậy (P) cắt (d) tại 2 điểm pb
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m-2\left(1\right)\\x_1x_2=-3\left(2\right)\end{matrix}\right.\)
Vì \(x_1x_2=-3< 0\)nên pt có 2 nghiệm trái dấu
đk : \(\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)
\(-x_1=3x_2\Leftrightarrow x_1+3x_2=0\)(3)
Từ (1) ; (3) \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1+3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_2=-\left(m-2\right)\\x_1=m-2-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-\left(m-2\right)}{2}\\x_1=\dfrac{2m-4+m-2}{2}=\dfrac{3m-6}{2}\end{matrix}\right.\)
Thay vào (2) ta được \(\dfrac{-3\left(m-2\right)^2}{4}=-3\Leftrightarrow\left(m-2\right)^2=4\Leftrightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)
PTHĐGĐ là:
x^2-(m-2)x-3=0
a*c<0
=>(P) luôn cắt (d) tại hai điểm pb
Theo đề, ta có: 3x2=-x1 và x1+x2=m-2
=>x1+3x2=0 và x1+x2=m-2
=>2x2=-m+2 và 3x2=-x1
=>x2=-1/2m+1 và x1=-3x2=3/2m-3
x1x2=-3
=>-1/2(m-2)*3/2(m-2)=-3
=>3/4(m-2)^2=3
=>(m-2)^2=4
=>m=4 hoặc m=0
Phương trình hoành độ giao điểm:
\(x^2-2x-3=x-m\)
\(\Leftrightarrow x^2-3x+m-3=0\left(1\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm cùng một phía với trục tung khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt cùng dấu
\(\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21-4m>0\\m-3>0\end{matrix}\right.\Leftrightarrow3< m< \dfrac{21}{4}\)
Theo định lí Vi-et: \(x_1+x_2=3\Rightarrow x_2=3-x_1\)
\(x^2_2=16x^2_1\)
\(\Leftrightarrow\left(3-x_1\right)^2=16x^2_1\)
\(\Leftrightarrow x_1^2-6x_1+9=16x^2_1\)
\(\Leftrightarrow15x_1^2+6x_1-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_1=\dfrac{3}{5}\end{matrix}\right.\)
Nếu \(x_1=-1\Rightarrow m=-1\left(l\right)\)
Nếu \(x_1=\dfrac{3}{5}\Rightarrow m=\dfrac{111}{25}\left(tm\right)\)
Vậy \(m=\dfrac{111}{25}\)
a: PTHĐGĐ là:
x^2-2x-|m|-1=0
a*c=-|m|-1<0
=>(d)luôn cắt (P) tại hai điểm phân biệt
b: Bạn bổ sung lại đề đi bạn
a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0
hay m<>2
b: \(\left|x_A-x_B\right|< 3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)
\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)
\(\Leftrightarrow\left(m-2\right)^2-3< 0\)
=>(m+1)(m-5)<0
=>-1<m<5
PTHĐGĐ là:
mx^2-2(m-2)x-m+3=0
Để (d) cắt (P) tại hai điểm phân biệt trái dấu thì m(-m+3)<0
=>m(m-3)>0
=>m>3 hoặc m<0
PTHĐGĐ là;
x^2-6x+m-3=0
Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48
Để PT có hai nghiệm phân biệt thì -4m+48>0
=>m<12
(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2
=>(x1-1)(-x1x2+x2+x1x2-1)=2
=>x1x2-(x1+x2)+1=2
=>m-3-6+1=2
=>m-8=2
=>m=10
Phương trình hoành độ giao điểm của (P) với (d) là :
\(x^2-2x-3=x+m\)
\(\Leftrightarrow x^2-3x-m-3=0\)
\(\Delta=9+4\left(m-3\right)=4m-3\)
Để (P) cắt (d) tại hai điểm phân biệt \(\Rightarrow\Delta=4m-3>0\Rightarrow m>\frac{3}{4}\)