cho tam giác ABC là tam giác nhọn , BH và CK là đường cao cắt nhau tại I Gọi M,N lần lượt là trung điểm của BC và AI CMR MN vuông góc với HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
a: Xét tứ giác BDCE có
BD//CE
BE//CD
Do đó: BDCE là hình bình hành
b: Ta có: BDCE là hình bình hành
nên BC cắt DE tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của DE
d: Xét tứ giác ABDC có
\(\widehat{ABD}+\widehat{ACD}=180^0\)
Do đó: ABDC là tứ giác nội tiếp
Suy ra: \(\widehat{A}+\widehat{D}=180^0\)