Tìm 2 số nguyên mà tổng của chúng bằng tích của chúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Gọi 2 số cần tìm là x và y
Ta có : xy = x - y
<=> xy - x + y = 0 <=> x.(y-1) + y-1 = 0 - 1 = -1
<=> (y-1).(x+1) = -1 = (-1).1 = 1.(-1)
Có 2 trường hợp
- TH1 : y-1 = -1 và x+1 = 1 thì tìm được x = 0; y = 0
- TH2 : y-1 = 1 và x+1 = -1 tìm được x = -2; y = 2
gọi 2 số đó là a và b
có: a+b=a.b
=> a=a.b-b
=> a= b(a-1) (1)
=.> a chia hết cho a-1
<=> a-1=1=> a=2
(1) =>2=b.1
=> b=2
vì a , b , c là 3 số nguyên tố khác nhau và có vai trò cùa a, b,c như nhau . Giả sử a > b > c => 3a > a + b + c
=> 3(a+b+c) < 9a => a.b.c < 9 a => b . c < 9 (a > 0) => b . c < 9 mà b và c là hai số nguyên tố
=> b = 3 và c = 2 và a = 5 . Thử lại 3(5+3+2)=5.3.2 (đúng)
Đáp số a = 5
b = 3
c = 2
1,
Gọi 3 số cần tìm là \(x,y,z\left(x,y,z\in Z;x,y,z>0\right)\)
Ta có : \(xyz=2\left(a+b+c\right)\)
Giả sử :\(x\ge y\ge z\Leftrightarrow xyz\le2.3x\)
\(xy\le6\) mà\(x,y\in Z\)
\(\Leftrightarrow xy\in\left\{1;2;3;4;5;6\right\}\)
Giải các trường hợp, ta được (x,y,z) là (1,3,8) ; (1,4,5) ; (2,2,4) và các hoán vị
1>
Gọi 3 số nguyên tố đó là a,b,c
Ta có: abc =5(a+b+c)
=> abc chia hết cho 5, do a,b,c nguyên tố
=> chỉ có trường hợp 1 trong 3 số =5, giả sử là a =5
=> bc = b+c +5 => (b-1)(c-1) = 6
{b-1 =1 => b=2; c-1 =6 => c=7
{b-1=2, c-1=3 => c=4 (loại)
Vậy 3 số nguyên tố đó là 2, 5, 7
2>
Với p=3 thì 2p+1 =7, 4p+1 = 13 là các số nguyên tố
Với p>3
* Do p nguyên tố nên ko chia hết cho 3
Nếu p = 3k +1 => 2p + 1 = 6k +3 chia hết cho 3
=> ko tồn tại số nguyên tố dạng 3k+1
Nếu p = 3k +2 => 4p + 1 = 12k +9 chia hết cho 3
=> ko tồn tại số nguyên tố dạng 3k+2
Vậy p=3 là duy nhất
3. => 1 trong 2 số phải là 1(tích của 2 số tự nhiên khác 1 là hợp số)
=> số thứ 2 là 2
Gọi 2 số nguyên cần tìm lần lượt là a;b
Theo bài ra ta có
ab = (a + b) x 2
=> ab - (a + b) x 2 = 0
=> ab - 2a - 2b = 0
=> a(b - 2) - 2b + 4 = 4
=> a(b - 2) - 2(b - 2) = 4
=> (a - 2)(b - 2) = 4
Vì \(a;b\inℤ\Rightarrow\hept{\begin{cases}a-2\inℤ\\b-2\inℤ\end{cases}}\)
Khi đó ta có 4 = 2.2 = (-2).(-2) = 1.4 = (-1).(-4)
Lập bảng xét dấu
a - 2 | 2 | -2 | 1 | 4 | -1 | -4 |
b - 2 | 2 | -2 | 4 | 1 | -4 | -1 |
a | 4 | 0 | 3 | 6 | 1 | -2 |
b | 4 | 0 | 6 | 3 | -2 | 1 |
Vậy các cặp số (a ; b) nguyên thỏa mãn là (4 ; 4) ; (0 ; 0) ; (6 ; 3) ; (3 ; 6) ; (1 ; -2) ; (-2 ; 1)
Hai số nguyên mà tổng của chúng bằng tích của chúng là 0 và 0
Gọi hai số nguyên đó là a và b
Theo đề, ta có: \(ab=a+b\)
\(\Leftrightarrow ab-a-b=0\)
\(\Leftrightarrow a\left(b-1\right)-\left(b-1\right)=1\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=1=1.1.=\left(-1\right).\left(-1\right)\)
\(TH1:\hept{\begin{cases}a-1=1\\b-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=2\end{cases}}\)
\(TH2:\hept{\begin{cases}a-1=-1\\b-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)