tìm x,biết:
(x-3).(2x+8)>0
cám ơn mn trước nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,5x+8=2x-7
5x+8-2x+7=0
<=>3x+15=0
<=>3x=-15
<=>x=-5
Vậy x=-5
b,3.(x+2)=2.(x-1)
<=>3x+6=2x-1
<=>3x+6-2x+1=0
<=>x+7=0
<=>x=-7
Vậy x=-7
Em đăng bài quả môn toán nhận hỗ trợ nhanh nhất nha
\(6\cdot x+9=15\)
\(\Rightarrow6\cdot x=15-9\)
\(\Rightarrow6\cdot x=6\)
\(\Rightarrow x=\dfrac{6}{6}=1\)
_______________
\(43+2x=49\)
\(\Rightarrow2x=49-43\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=\dfrac{6}{2}=3\)
____________
\(x:2+5=11\)
\(\Rightarrow x:2=11-5\)
\(\Rightarrow x:2=6\)
\(\Rightarrow x=6\cdot2=12\)
______________
\(77-11x=0\)
\(\Rightarrow11x=77\)
\(\Rightarrow x=\dfrac{77}{11}\)
\(\Rightarrow x=7\)
_______________
\(12-4:x=8\)
\(\Rightarrow4:x=12-8\)
\(\Rightarrow4:x=4\)
\(\Rightarrow x=\dfrac{4}{4}=1\)
_____________
\(x:3+8=11\)
\(\Rightarrow x:3=11-8\)
\(\Rightarrow x:3=3\)
\(\Rightarrow x=3\cdot3=9\)
a: 6x+9=15
=>6x=6
=>x=1
b: 2x+43=49
=>2x=6
=>x=3
c: x:2+5=11
=>x:2=6
=>x=12
d: 77-11x=0
=>7-x=0
=>x=7
e: 12-4:x=8
=>4:x=4
=>x=1
f: x:3+8=11
=>x:3=3
=>x=9
\(a,\Rightarrow3x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\\ b,\Rightarrow\left(x-3\right)\left(2x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\\ c,Đề.sai\\ d,Sửa:\left(x-2\right)^2-16\left(5-2x\right)^2=0\\ \Rightarrow\left[x-2-4\left(5-2x\right)\right]\left[x-2+4\left(5-2x\right)\right]=0\\ \Rightarrow\left(x-2-20+8x\right)\left(x-2+20-8x\right)=0\\ \Rightarrow\left(9x-22\right)\left(18-7x\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{22}{9}\\x=\dfrac{18}{7}\end{matrix}\right.\)
\(\left(2x-1\right)^3-8\left(x-1\right)\left(x^2+x+1\right)+12x^2=2x+1\)
\(\Leftrightarrow8x^3-12x^2+6x-1-8\left(x^3-1\right)+12x^2-2x-1=0\)
\(\Leftrightarrow4x+6=0\)
\(\Leftrightarrow2\left(2x+3\right)=0\)
\(\Leftrightarrow2x=-3\)
\(\Leftrightarrow x=\frac{-3}{2}\)
I 2x-3 I = I x+1 I
2x-3 = x+1
x+1 - 2x+3=0
x (1-2) +1+3=0
-1x +4 =0
-1x = 0-4
-1x =-4
x = -4 : -1
x =4
Trả lời:
\(\left|2x-3\right|=\left|x+1\right|\)
\(\Rightarrow2x-3=x+1\) hoặc \(2x-3=-\left(x+1\right)\)
TH1: \(2x-3=x+1\)
\(2x-x=1+3\)
\(x=4\)
TH2: \(2x-3=-\left(x+1\right)\)
\(2x-3=-x-1\)
\(2x+x=-1+3\)
\(3x=2\)
\(x=\frac{2}{3}\)
Vậy \(x=4;x=\frac{2}{3}\)
a) \(\left|2x-1\right|+\frac{1}{3}=0\)
\(\Leftrightarrow\left|2x-1\right|=-\frac{1}{3}\)
=> vô lý
=> PT vô nghiệm
b) \(\left|x+2\right|+\left|x-3\right|=0\)
\(\Leftrightarrow\left|x+2\right|=-\left|x-3\right|\)
Vì \(\hept{\begin{cases}\left|x+2\right|\ge0\\-\left|x-3\right|\le0\end{cases}\left(\forall x\right)}\) nên dấu "=" xảy ra khi:
\(\left|x+2\right|=-\left|x-3\right|=0\Rightarrow\hept{\begin{cases}x=-2\\x=3\end{cases}}\) (vô lý)
=> PT vô nghiệm
\(\left(x-3\right)\left(2x+8\right)\ge0\)
Th1: \(\hept{\begin{cases}x-3\ge0\\2x+8\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\ge-4\end{cases}\Rightarrow}x\ge3\)
Th2: \(\hept{\begin{cases}x-3\le0\\2x+8\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\le-4\end{cases}\Rightarrow}x\le-4\)
nhưng vì sao bạn lại ra 2 TH