S=2+2^2+2^3+2^4+. . .+2^100+2^101 Tim so du khi chia S cho 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: S=(1+3^2+3^4)+(3^6+3^8+3^10)+....+(3^2004+3^2006+3^2008)
S=91+3^6.(1+3^2+3^4)+....+3^2004.(1+3^2+3^4)=91.(1+3^6+...+3^2004) . Vì vậy S chia hết cho 91 và dư 0
b)Ta có:S=1+(3^2+3^4)+(3^6+3^8)+....+(3^2006+3^2008)=1+3^2.(1+3^2)+3^6.(1+3^2)+...+3^2006.(1+3^2)
S=1+3^2.10+3^6.10+....+3^2006.10=1+10.(3^2+3^6+...+3^2006). Vì vậy S có tận cùng là chữ số 1
Đúng rồi bạn nhé!
1. A= 4p+3 = 17m+9= 19n+13
A+25 =4p+28= 17m+34 =19n+38
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19
vậy A+25 chia hết cho 4.17.19 =1292
A chia 1292 dư (1292-25) = 1267
2....
\(\Rightarrow S=2+\left(2^2+2^3+2^4+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}+2^{101}\right)\)
\(\Rightarrow S=2+2^2\left(1+2+2^2+2^3\right)+...+2^{98}\left(1+2+2^2+2^3\right)\)
\(\Rightarrow S=2+2^2.15+...+2^{98}.15=2+15\left(2^2+...+2^{98}\right)\) chia cho 15 dư 2