K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

\(\Rightarrow S=2+\left(2^2+2^3+2^4+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}+2^{101}\right)\)

\(\Rightarrow S=2+2^2\left(1+2+2^2+2^3\right)+...+2^{98}\left(1+2+2^2+2^3\right)\)

\(\Rightarrow S=2+2^2.15+...+2^{98}.15=2+15\left(2^2+...+2^{98}\right)\) chia cho 15 dư 2

30 tháng 12 2015

chtt nha bạn

các bạn cho mk vài li-ke cho tròn 200 với 

19 tháng 7 2017

a)Ta có: S=(1+3^2+3^4)+(3^6+3^8+3^10)+....+(3^2004+3^2006+3^2008)

S=91+3^6.(1+3^2+3^4)+....+3^2004.(1+3^2+3^4)=91.(1+3^6+...+3^2004) . Vì vậy  S chia hết cho 91 và dư 0

b)Ta có:S=1+(3^2+3^4)+(3^6+3^8)+....+(3^2006+3^2008)=1+3^2.(1+3^2)+3^6.(1+3^2)+...+3^2006.(1+3^2)

S=1+3^2.10+3^6.10+....+3^2006.10=1+10.(3^2+3^6+...+3^2006). Vì vậy S có tận cùng là chữ số 1

Đúng rồi bạn nhé!

9 tháng 1 2016

1. A= 4p+3 = 17m+9= 19n+13 
A+25 =4p+28= 17m+34 =19n+38 
nhận thấy A+25 đồng thời chia hết cho 4, 17 và 19 
vậy A+25 chia hết cho 4.17.19 =1292 
A chia 1292 dư (1292-25) = 1267

2....