K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

A B C E F D

\(a,\)Xét \(\Delta ADB\)và \(\Delta BFE\)có :

\(AB=BE\left(gt\right)\)

\(\widehat{DAB}=\widehat{FBE}\)( hai góc đồng vị )

\(AD=BF\left(=\frac{1}{2}AC\right)\)

\(\Rightarrow\Delta ADB=\Delta BFE\left(c.g.c\right)\)

\(\Rightarrow EF=BD\)( hai cạnh tương ứng )

\(b,\)Trong \(\Delta AEC\)có \(AB=BE\left(gt\right)\)và \(AD=DC\left(gt\right)\)

\(\Rightarrow BD\)là đường trung bình của \(\Delta AEC\)

\(\Rightarrow BD=\frac{1}{2}EC\)

Mà \(BD=EF\Rightarrow EF=\frac{1}{2}EC\)

Hay F là trung điểm EC ( đpcm )

15 tháng 11 2023

a:\(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^0+\widehat{BAC}\)

Do đó: \(\widehat{DAC}=\widehat{BAE}\)

Xét ΔDACvà ΔBAE có

AD=AB

\(\widehat{DAC}=\widehat{BAE}\)

AC=AE

Do đó: ΔDAC=ΔBAE

=>DC=BE

b: ΔDAC=ΔBAE

=>\(\widehat{ADC}=\widehat{ABE};\widehat{ACD}=\widehat{AEB}\)

\(\widehat{CEB}+\widehat{ECD}\)

\(=\widehat{CEB}+\widehat{ECA}+\widehat{DCA}\)

\(=\widehat{ECA}+\widehat{AEB}+\widehat{CEB}\)

\(=\widehat{ECA}+\widehat{AEC}=90^0\)

=>BE\(\perp\)CD

16 tháng 4 2021

(hình bạn tự vẽ nhé)

a) ta có:tam giác ABC=tam giác DCB (g.c.g)(1)

tam giác BED=tam giác DCB(g.c.g) (2)

Từ (1),(2)→tam giác ABC=tam giác BED (dfcm)

b) Tương tự câu a, ta chứng minh được ΔABC=ΔCDF

→AC = CF suy ra F là trung điểm của AF

c)Tương tự câu b, ta chứng minh được AB=BE,ED=DF

suy ra BF,CE là đường trung tuyến của ΔAEF

suy ra G là trọng tâm

a: Xét ΔABD và ΔEBD có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=góc BAD=90 độ

=>ΔBED vuông tại E

c: AD=DE

DE<DC

=>AD<DC

d: AB+EF=BE+EF

mà BE+EF>BF

nên AB+EF>BF

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD
BD chung

=>ΔBAD=ΔBED

=>AD=ED

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>E,D,F thẳng hàng

c: BA=BA

DA=DE

=>BD là trung trực của AE

AD=DE
DE<DC

=>AD<DC

9 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

          \(AB^2+AC^2=BC^2\)

=>\(BC^2\)=64+36=100(cm)

=>BC=10cm

vậy  BC=10cm

b,xét 2t.giác vuông ABE và DBE có:

          EB chung

          AB=BD(gt)

=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)

c,xét 2 t.giác vuông  AEF và t.giác DEC có:

            AE=DE(theo câu b)

            \(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)

=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)

=>AF=DC mà BA=BD(gt) suy ra BF=BC

d,gọi O là giao điểm của BE và CF 

xét t.giác BFO và t.giác BCO có:

            BF=BC(theo câu c)

            \(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)

            BO cạnh chung

=> t.giác BFO=t.giác BCO(c.g.c)

=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)

Từ (1) và (2) suy ra BE là trung trực của CF

học tốt!

          

7 tháng 12 2016

?????????????????????????????????????????????????????