K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Goi giao NM voi AC la D

Xet tam giac BHA co N la trung diem BH ,    M la trung diem AH

=> NM la duong trung binh => NM // AB 

ma AB vuong goc voi AC (gt)

Suy ra NM vuong goc voi AC ( tu vuong goc den song song)

Xet tam giac NAC co AH vuong goc voi NC (gt)

                                    NM vuong goc voi AC ( cmt)

=> M la truc tam tam giac ANC 

=> CM vuong goc voi AN 

DPCM

Xét ΔHAB có 

M là trung điểm của AH(gt)

N là trung điểm của BH(gt)

Do đó: MN là đường trung bình của ΔHBA(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//AB và \(MN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay MN\(\perp\)AC(đpcm)

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔAHB\(\sim\)ΔCHA

b: BM/AN=HB/HA

mà HB/HA=AB/CA

nên BM/AN=AB/CA

Xét ΔABM và ΔCAN có

BM/AN=AB/CA

\(\widehat{ABM}=\widehat{CAN}\)

Do đó: ΔABM\(\sim\)ΔCAN

Bài 1:

a: Ta có: ΔBKC vuông tại K

mà KM là đường trung tuyến

nên KM=BC/2(1)

Ta có: ΔBHC vuông tại H

mà HM là đường trung tuyến

nên HM=BC/2(2)

Từ (1)và (2) suy ra MH=MK

hay ΔMHK cân tại M

b: Kẻ MN vuông góc với HK

=>N là trung điểm của HK

Xét hình thang CBDE có

M là trung điểm của BC

MN//DB//EC

DO đó: N là trung điểm của DE

=>DK=HE