K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2015

góc tạo bởi hai tia phân giác của hai góc kề bù là:

A. phụ nhau

B.góc bẹt

C.góc tù

D.góc vuông

23 tháng 2 2022

TL

undefined

Học tốt ^^

16 tháng 11 2021

góc vuông.

16 tháng 11 2021

góc bét

 

27 tháng 9 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

7 tháng 10 2016

O x y z m m 1 2 3 4

Cho 2 góc xOy và yOz kề bù .

Om ; On lần lượt là tia phân giác của 2 góc đó 

\(\Rightarrow\begin{cases}\widehat{O_1}=\widehat{O_2}=\frac{1}{2}.\widehat{xOy}\\\widehat{O_3}=\widehat{O_4}=\frac{1}{2}.\widehat{yOz}\end{cases}\)

\(\Rightarrow\widehat{O_2}+\widehat{O_3}=\frac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\frac{1}{2}.180^0=90^0\)

=> Đpcm

7 tháng 10 2016

* Vẽ hình: Vẽ hình hơi xấu chút! leuleu

x y O z t t'

* Viết giả thiết, kết luận:

GT: - Góc xOz và góc yOz là hai góc kề bù

       - Ot là tia phân giác của góc xOz

       - Ot' là tia phân giác của góc yOz

KL: Góc tot' là 1 góc vuông

* Chứng minh:

  Góc xOt = góc tOz = 1/2 . góc xOz (vì Ot là tia phân giác của góc xOz)

   Góc yot' = góc t'Oz = 1/2 . góc yOz (vì Ot' là tia phân giác của góc yOz)

        Góc xOz + góc yOz = 180 độ (vì 2 góc kề bù)

Vì góc xOz và góc yOz là 2 góc kề bù mà

    Ot là tia phân giác xOz

    Ot' là tia phân giác yOz

=> Tia Oz nằm giữa hai tia Ot và Ot' nên:

Góc tOt' = góc tOz + góc t'Oz = 1/2 . góc xOz + 1/2 . góc yOz = 1/2 . (góc xOz + góc yOz) = 1/2 . 180 độ = 90 độ

Vậy tOt' là 1 góc vuông.

   

30 tháng 9 2018

c. góc vuông nha bạn 

31 tháng 1 2016

90 độ

mình nhá bạn mình đi

23 tháng 9 2016

A B O M N

28 tháng 9 2019

A B D E F C

Như hình vẽ trên: DE là pg góc ADB và DF là pg góc ADC

=>ADE = 1/2 (ADB) và ADF = 1/2(ADC)

=>ADE + ADF = EDF = 1/2(ADB + ADC) = 1/2*180 = 90

=>dpcm

28 tháng 9 2019

                                       Giải:

O x' x y t m 0 t' GT xOy và x'Oy kề bù Ot là tia phân giác của góc xOy Ot' là tia phân giác của góc x'Oy KL Ot vuông góc với Ot'

Đặt \(\widehat{xOy}=m^0(0< m^0< 180^0)\)

Hai góc xOy và yOx' là hai góc kề bù nên \(\widehat{xOy}+\widehat{yOx'}=180^0\)do đó \(\widehat{x'Oy}=180^0-\widehat{xOy}=180^0-m^0\)

Theo giả thiết Ot và Ot' lần lượt là tia phân giác của góc xOy và x'Oy nên \(\widehat{tOy}=\frac{1}{2}\widehat{xOy}=\frac{1}{2}m^0\)và \(\widehat{t'Oy}=\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\left[180^0-m^0\right]\). Tia Oy nằm giữa hai tia Ot và Ot', do đó \(\widehat{tOt}=\widehat{tOy}+\widehat{yOt'}=\frac{1}{2}m^0+\frac{1}{2}\left[180^0-m^0\right]=90^0\)

Vậy \(Ot\perp Ot'\)