K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

giải giúp mk câu b) thôi

9 tháng 8 2019

A B C D E F H

a) Áp dụng định lí pitago.

Ta có: \(AB^2=AD^2+BD^2=BE^2+AE^2\)

\(HC^2=HD^2+DC^2=HE^2+EC^2\)

=> \(AB^2+HC^2=AD^2+BD^2+HD^2+DC^2\)

\(=\left(AD^2+DC^2\right)+\left(BD^2+HD^2\right)=AC^2+BH^2\) (1)

và \(AB^2+HC^2=BE^2+AE^2+HE^2+EC^2\)

\(=\left(BE^2+EC^2\right)+\left(AE^2+HE^2\right)=BC^2+AH^2\)(2)

Từ (1) , (2) Ta có: \(AB^2+HC^2=AC^2+HB^2=BC^2+HA^2\)

b) Ta có: \(S_{AHB}+S_{AHC}+S_{BHC}=S_{ABC}=S\)

\(AB.HC=AB\left(CF-FH\right)=AB.CF-AB.FH\)

\(=2S_{ABC}-2S_{AHB}=2S-2S_{ABH}\)

Tương tự: \(BC.HA=2S-2S_{BHC}\)

                 \(CA.HB=2S-2S_{AHC}\)

Cộng lại ta có:

\(AB.HC+BC.AH+CA.HB=6S-2\left(S_{AHB}+S_{AHC}+S_{BHC}\right)\)

\(=6S-2S=4S\)(đpcm)

11 tháng 10 2020

Gọi AD, BE, CF là ba đường cao của tam giác ABC cắt nhau tại H

1. Theo định lý Pythagoras, ta có: \(AB^2+HC^2=\left(AD^2+DB^2\right)+\left(HD^2+DC^2\right)=\left(AD^2+DC^2\right)+\left(DB^2+HD^2\right)=AC^2+HB^2\)(1)

\(BC^2+HA^2=\left(BE^2+EC^2\right)+\left(AE^2+HE^2\right)=\left(BE^2+AE^2\right)+\left(EC^2+HE^2\right)=AB^2+HC^2\)(2)

Từ (1) và (2) suy ra \(AB^2+HC^2=AC^2+HB^2=BC^2+HA^2\)(đpcm)

2. Ta có: \(BC.HA=BC.AD-BC.HD=2S-2S_{BHC}\)

Tương tự: \(AB.HC=2S-2S_{AHB}\)\(CA.HB=2S-2S_{AHC}\)

Suy ra \(AB.HC+BC.HA+CA.HB=6S-2S=4S\)(đpcm)

18 tháng 2 2016

bai kho nhu con cho

23 tháng 7 2023

a) Ta có: HA = 2RcosA HB = 2RcosB HC = 2RcosC AB = 2RsinC AC = 2RsinB Vậy ta cần chứng minh: 2RcosA + 2RcosB + 2RcosC < 2RsinC + 2RsinB Chia cả 2 vế cho 2R, ta có: cosA + cosB + cosC < sinC + sinB Áp dụng bất đẳng thức tam giác, ta có: sinC + sinB > sin(A + B) = sinCOSA + cosCSINA = cosA + cosB Vậy ta có: cosA + cosB + cosC < sinC + sinB Do đó, ta có HA + HB + HC < AB + AC. b) Ta có: AB + BC + CA = 2R(sinA + sinB + sinC) = 2R(sinA + sinB + sin(A + B)) = 2R(2sin(A + B/2)cos(A - B/2) + sin(A + B)) = 4Rsin(A + B/2)cos(A - B/2) + 2Rsin(A + B) Vậy ta cần chứng minh: 2RcosA + 2RcosB + 2RcosC < 2332​ (4Rsin(A + B/2)cos(A - B/2) + 2Rsin(A + B)) Chia cả 2 vế cho 2R, ta có: cosA + cosB + cosC < 1166​(2sin(A + B/2)cos(A - B/2) + sin(A + B)) Áp dụng bất đẳng thức tam giác, ta có: sin(A + B) > sinC = sin(A + B/2 + B/2) = sin(A + B/2)cos(B/2) + cos(A + B/2)sin(B/2) Vậy ta có: 2sin(A + B/2)cos(A - B/2) + sin(A + B) < 2sin(A + B/2)cos(A - B/2) + sin(A + B/2)cos(B/2) + cos(A + B/2)sin(B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2)) + cos(A + B/2)sin(B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2)) + sin(B/2)cos(A + B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2) + cos(A + B/2)) Vậy ta có: cosA + cosB + cosC < 1166​(2sin(A + B/2)cos(A - B/2) + sin(A + B)) < 1166​(sin(A + B/2)(2cos(A - B/2) + cos(B/2) + cos(A + B/2))) Do đó, ta có HA + HB + HC < 2332​(AB + BC + CA).

2 tháng 8 2019

A B C E D F H I G

a) Qua H kẻ HG//AB  cắt AC tại G; kẻ HI//AC cắt AB tại I như hình vẽ.

=> HI vuông BH ; CH vuông HG

và AIHG là hình bình hành

Xét tam giác BHI vuông tại H => BH<BI ( mối quan hệ cạnh góc vuông và cạnh huyền) (1)

Xét tam giác CHG vuông tại H => CH<CG  

=> CH+BH + AH< BI+CG +AH 

Ta lại có AH <AI+IH (  bất đẳng thức trong tam giác AIH)

mà IH=AG ( AIHG là hình bình hành theo cách vẽ )

=> AH < AI+AG 

Vậy CH+BH+AH<BI+CG+AI+AG=AB+AC

b) Chứng minh AB+AC+BC>3/2 (HA+HB+HC) 

Chứng minh tương tự như câu a.

Ta có: \(AB+AC>HA+HB+HC\)

\(BC+AC>HA+HB+HC\)

\(AB+BC>HA+HB+HC\)

Cộng theo vế ta có:

\(2AB+2AC+2BC>3HA+3HB+3HC\)

=> \(2\left(AB+AC+BC\right)>3\left(HA+HB+HC\right)\)

=> \(AB+AC+BC>\frac{3}{2}\left(HA+HB+HC\right)\)

2 tháng 8 2019

Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

9 tháng 8 2019

Em tham khảo!

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath