Cho \(a,b,c,d\in R\)và \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)=16\)
Chứng minh : \(-3\le ab+ac+ad+bc+bd+cd+abcd\le5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+c\right)\left(b+d\right)+2\left(ac+bd\right)\le\left(a+c\right)\left(b+d\right)+2\left(\dfrac{\left(a+c\right)^2}{4}+\dfrac{\left(b+d\right)^2}{4}\right)\\ =\dfrac{1}{2}\left(\left(a+c\right)^2+2\left(a+c\right)\left(b+d\right)+\left(b+d\right)^2\right)\\ =\dfrac{1}{2}\left(a+c+b+d\right)^2=\dfrac{1}{2}\)
\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)
\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)
Ta có:
\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)
\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)
\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)
B1: https://olm.vn/hoi-dap/question/133327.html
B2: áp dụng bđt Bu-nhi-a-cop-xki với 2 bộ số (a;b) và (c;d) ra luôn
\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)
\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)
\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)
a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)
= a3+b3+a3-b3 = 2a3
b) a3+b3
= (a+b)(a2-ab+b2)
= (a+b)(a2- 2ab+b2)+ab
= (a+b)(a2-b2)+ab
BĐT\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2+6\left(ab+bc+cd+da+bd+ca\right)\ge8\left(ab+bc+cd+da+bd+ca\right)\)
\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2-2\left(ab+bc+cd+da+bd+ca\right)\ge0\) (*)
Ta có: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd\)
\(d^2+a^2\ge2da;b^2+d^2\ge2bd;c^2+a^2\ge2ca\)
Cộng theo vế các BĐT trên suy ra \(3a^2+3b^2+3c^2+3d^2\ge2\left(ab+bc+cd+da+bd+ca\right)\)
Do vậy BĐT (*) đúng hay ta có đpcm.
P/s: EM còn khá dốt BĐT,mong được các anh chị chỉ bảo cho ạ!
Cần cù bù thông minh ^^
\(BDT\Leftrightarrow\frac{1}{9}\left(-3a+b+c+d\right)^2+\frac{2}{9}\left(2b-c-d\right)^2+\frac{2}{3}\left(c-d\right)^2\ge0\)
Hihi mình phân tích hơi nham nhở thông cảm nha :(
Ta có:
\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(a+2b+c\right)^2}+\frac{1}{\left(a+b+2c\right)^2}\)
\(\le\frac{1}{4\left(a+b\right)\left(a+c\right)}+\frac{1}{4\left(b+a\right)\left(b+c\right)}+\frac{1}{4\left(c+a\right)\left(c+b\right)}\)
\(=\frac{2\left(a+b+c\right)}{4\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Giờ ta cần chứng minh
\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{9}{16\left(ab+bc+ca\right)}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Vậy ta có ĐPCM