cho hinh thang ABCD ( AB song song vs CD) có AB<CD.CMR: góc A+ góc B>góc C+ góc D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(AB//CD\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)
Mà \(\widehat{B}=2\widehat{C}\Leftrightarrow2\widehat{B}=180^0\)
\(\Leftrightarrow\widehat{B}=90^0\Rightarrow\widehat{C}=45^0\)
\(\widehat{A}+\widehat{D}=180^0\)
Mà \(\widehat{A}=\widehat{D}+40\Rightarrow\widehat{A}=70,\widehat{D}=110\)
Gọi E là trung điểm AD. Ta có ME là đường trung bình của hình thang ABCD => ME // CD // AB
Suy ra góc MDC = góc MDE = góc DME (so le trong)
=> Tam giác DEM cân tại E => ME = DE = AE
=> Tam giác AEM cân tại E => góc EAM = góc EMA (1)
mà EM // AB => Góc AME = góc BAM (so le trong) (2)
Từ (1) và (2) suy ra góc EAM = góc BAM
=> AM là tia phân giác góc A (đpcm)
Vì tứ giác ABCD có AB //CD
=> ABCD là hình thang
=> A+D = 180 độ
Mà A = 40 + D
=> 40 + D + D = 180 độ
=> 2D + 40 = 180 độ
=> 2D = 140 độ
=> D = 70 độ
=> A = 180 - 70 = 110 độ
Mà B + C = 180 độ
Mà B = 2C
=> 2C + C = 180 độ
=> 3C = 180 độ
=> C = 60 độ
=> B = 180 - 60 = 120 độ
a) Vì ABCD là hình thang cân
=> B = A = 120°
=> Mà AB//CD
=> A + D = 180° ( trong cùng phía)
=> D = C = 60°
do AB song song với CD nên ta có \(A+D=180^0\text{ mà }A=D+40^0\Rightarrow D+40^0+D=180^0\Rightarrow\hept{\begin{cases}D=70^0\\A=110^0\end{cases}}\)
\(\Rightarrow C=\frac{A}{2}=55^0\Rightarrow B=180^0-55^0=125^0\)