Giải phương trình:
\(28+\sqrt[3]{x^2}=3x+2\sqrt[3]{x}+\left(x-4\right)\sqrt{x-7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(\Leftrightarrow\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)
\(\Rightarrow\left(x-2\right)^2=x^2-4\)
\(\Leftrightarrow x^2-4x+4-x^2+4=0\)
\(\Leftrightarrow-4x+8=0\)
\(\Leftrightarrow x=2\)
ĐKXĐ: \(0\le x\le7;x\in R\)
Phương trình cho tương đương: \(2\sqrt{x}+\left(7-x\right)=\left(2+\sqrt{x}\right)\sqrt{7-x}\)
Đặt \(\sqrt{x}=a,\sqrt{7-x}=b\) với \(a,b\ge0\). Khi đó ta có phương trình:
\(2a+b^2=\left(2+a\right)b\Leftrightarrow b^2-2b+2a-ab=0\)
\(\Leftrightarrow\left(b-2\right)\left(b-a\right)=0\). Đến đây thì dễ rồi :)
sáng sớm lang thang lật lại mấy trang gặp bài này, xin trình bày vài cách:
Đk:\(x\ge2\) \(\left(DK\forall PP\right)\)
C1 \(pt\Leftrightarrow x^3-3x\left(x+2\right)-2\sqrt{\left(x+2\right)^3}=0\)
Đặt \(t=\sqrt{x+2}\) ra pt đăng cấp bậc 3...
c2:\(pt\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}+1\right)^2=\left(3\left(x+1\right)\right)^2\)
c3:\(pt\Leftrightarrow\left(\sqrt{\left(x+2\right)^3}-3x-2\right)\left(3x+\sqrt{\left(x+2\right)^3+4}\right)=0\)
C4:Chia 2 vế x3 dc:
\(1-\frac{3}{x}\pm2\sqrt{\left(\frac{1}{x}+\frac{2}{x^2}\right)}-\frac{6}{x^2}=0\)
đặt \(\sqrt{\left(\frac{1}{x}+\frac{2}{x^2}\right)}=t\) dc \(1\pm3t^2+2t^3=0\)
Ngoài ra còn có thể liên hợp ,.....
b/ Đặt \(\sqrt{x^2+1}=a\ge0\)
\(\Rightarrow a^2+3x=\left(x+3\right)a\)
\(\Leftrightarrow\left(3-a\right)\left(x-a\right)=0\)
a/ Dựa vô TXĐ thì thấy \(x< 2\)
\(\Rightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}-x>\sqrt{6}-2>0\)
Vậy vô nghiệm