K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

\(a^6-1=\left(a^3-1\right)\left(a^3+1\right)=\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)

6 tháng 8 2019

\(a^6-1=\left(a^3-1\right).\left(a^3+1\right)=\left(a-1\right).\left(a^2+a+1\right).\left(a-1\right).\left(a^2-a+1\right)\)

\(=\left(a-1\right).\left(a+1\right).\left(a^4+a^2+1\right)=\left(a-1\right).\left(a+1\right).\left(a^4-13a^2+14a^2+1\right)\)

\(=\left(a-1\right).\left(a+1\right).\left(a^2-4\right).\left(a^2-9\right)+14a^2.\left(a-1\right).\left(a+1\right)\)

đến đây dễ rồi, b tự làm tiếp :)) 

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

11 tháng 8 2017

Xét \(a^6-1=\left(a^3-1\right)\left(a^3+1\right)\)

Đặt  \(a=7k⊥r\)với r=1;2;3. (vì a không là bội của 7)

Ta có \(a^3=\left(7k⊥r\right)^3=343k^3⊥147k^2r+21kr^2⊥r^3\)

Xét r với lần lượt các giá trị 1;2;3.

Từ đó ta suy ra được \(a^3=7l⊥1\)

Xét từng trường hợp trên ta suy ra \(\left(a^3-1\right)\left(a^3+1\right)⋮7\)dẫn đến \(\left(a^6-1\right)⋮7\)

Vậy........

2 tháng 12 2021

mình học lớp 4 bạn đố như này bố thằng nào trả lời được

13 tháng 4 2022

thì đừng trả lời

 

16 tháng 10 2016

bài này cũng không biết làm

23 tháng 10 2016

không biết làm nói luôn đi

13 tháng 11 2015

TẤT CẢ ĐỀU CÓ TRONG  " câu hỏi tương tự "