K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét \(\left(O\right)\) có 

OA là một phần đường kính

CD là dây

OA\(\perp\)CD tại H

Do đó: H là trung điểm của CD

Xét tứ giác OCAD có

H là trung điểm của đường chéo CD

H là trung điểm của đường chéo OA

Do đó: OCAD là hình bình hành

mà OC=OD

nên OCAD là hình thoi

2: Ta có: OCAD là hình thoi

nên OC=OD=AC=AD

mà OA=OC

nên OC=OD=AC=AD=OA

Xét ΔOAC có OA=OC=AC

nên ΔOAC đều

a: Xét ΔCAO có

CM vừa là đường cao, vừa là trung tuyến

=>ΔCAO cân tại C

=>CA=CO

ΔOCD cân tại O

mà OM là đường cao

nên M là trung điểm của CD

Xét tứ giác OCAD có

M là trung điểm chung của OA và CD

OC=CA

=>OCAD là hình thoi

b:

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>góc CAB+góc CBA=90 độ

=>góc CBA=90-60=30 độ

Xét ΔBCD có

BM vừa là đường cao, vừa là trung tuyến

=>ΔBCD cân tại B

mà BM là đường cao

nên BM là phân giác của góc CBD

=>góc CBD=2*góc CBM=60 độ

=>ΔCBD đều