Cho tam giác ABC. M là trung điểm của AB, I là trung điểm BC và N thoả mãn vt NA +3 vt NC =0 a) tính vt MN theo vt AB và vt AC b) tính vt IM theo vt IA và vt IC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ mà ,mình bỏ chữ vecto nha
IA+IB+IC+ID=IM+MA+IM+MB+IN+NC+IN+ND
=2IM+2IN+MA+MB+NC+ND
=0
a) II là điểm trên cạnh BCBC mà: 2CI=3BI⇒BICI=232CI=3BI⇒BICI=23
⇒BICI+BI=23+2⇒BIBC=25⇒BICI+BI=23+2⇒BIBC=25
⇒BI=25BC⇒BI=25BC tương tự IC=35BCIC=35BC
JJ là điểm trên BCBC kéo dài: 5JB=2JC⇒JBJC=255JB=2JC⇒JBJC=25
⇒JBJC−JB=25−2⇒JBBC=23⇒JBJC−JB=25−2⇒JBBC=23
⇒JB=23BC⇒JB=23BC và BC=35JCBC=35JC
→AB=→AI+→IBAB→=AI→+IB→
=→AI−25→BC=AI→−25BC→
=→AI−25.32→JB=AI→−25.32JB→
=→AI−35→JB=AI→−35JB→
=→AI−35(→JA+→AB)=AI→−35(JA→+AB→)
=→AI+35→AJ−35→AB=AI→+35AJ→−35AB→
⇒→AB+35→AB=→AI+35→AJ⇒AB→+35AB→=AI→+35AJ→
⇒→AB=58→AI+38→AJ⇒AB→=58AI→+38AJ→
→AC=→AI+→ICAC→=AI→+IC→
=→AI+35→BC=AI→+35BC→
=→AI+35.35→JC=AI→+35.35JC→
=→AI+925(→JA+→AC)=AI→+925(JA→+AC→)
⇒→AC−925→AC=→AI−925→AJ⇒AC→−925AC→=AI→−925AJ→
⇒→AC=2516→AI−916→AJ⇒AC→=2516AI→−916AJ→
⇒52→AB=2516→AI+1516→AJ⇒52AB→=2516AI→+1516AJ→
và →AC=2516→AI−916→AJAC→=2516AI→−916AJ→
Trừ vế với vế ta có:
52→AB−→AC=32→AJ52AB→−AC→=32AJ→
⇒→AJ=53→AB−23→AC
1) 6MK+ 4AB+ CB=0
6MK+ 4AM+ 4MB+ CM+ MB=0
4AK+ CK+ MK+ 5MB=0
4GC+ GA+ MA+ GC+ 5 MG+ 5GB=0
4GC+ MA+ 5MG+ 4GB=0
4GC+ 4GA+4GB=0
=> Thỏa mãn yêu cầu đề bài
2)
* áp dụng tính chất đường phân giác chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.
=> CD/AC=DB/AB
<=> 6CD= 8DB
=> 6 vectoCD= 8vectoDB
6CD+ 8BD=0
6CA+ 6AD+ 8 BA+ 8AD=0
14AD= 6AC+ 8AB
AD=3/7AC+ 4/7AB
* cũng áp dụng tính chất đường phân giác
EB/EC=AB/AC
8EB=6EC
=> 8 vecto EB= 6vecto EC
8EA+ 8AB= 6EA+ 6AC
2EA= 6AC- 8AB
EA= 3AC- 4AB
a, Gọi D là trung điểm của MN \(\Rightarrow\overrightarrow{MN}=2\overrightarrow{MD}\).
Ta có: \(\overrightarrow{NA}+3\overrightarrow{NC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{AN}=3\overrightarrow{NC}\) \(\Leftrightarrow AN=3NC\)
\(\overrightarrow{MD}=\overrightarrow{AD}-\overrightarrow{AM}=\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)-\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AN}-\frac{1}{2}\overrightarrow{AM}\)
\(\overrightarrow{MD}=\frac{3}{8}AC-\frac{1}{4}\overrightarrow{AB}\Rightarrow\overrightarrow{MN}=\frac{3}{4}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)
b, IM là đường trung bình của tam giác ABC
\(\Rightarrow\) \(\overrightarrow{IM}=\frac{1}{2}\overrightarrow{CA}=\frac{1}{2}\left(\overrightarrow{IA}-\overrightarrow{IC}\right)\)