Cho a+b+c chia hết cho 30 (a,b,c thuộc Z) . CMR: a5+b5+c5 chia hết cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=a^5+b^5+c^5\)
\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)
Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5
Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5
Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)
Vậy \(B=a^5-a⋮5\) với mọi a nguyên
Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c
\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)
(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))
Vì a+b+c=0 nên
\(a^5+b^5+c^5=a^5+b^5+c^5-a-b-c\)
= \(a\left(a^4-1\right)+b\left(b^4-1\right)+c\left(c^4-1\right)\)
Lại có :
\(a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)= \(a\left(a+1\right)\left(a-1\right)\left(a^2-4+5\right)\)
= \(a\left(a+1\right)\left(a-1\right)\left(a^2-4\right)+5a\left(a+1\right)\left(a-1\right)\)
= \(a\left(a+1\right)\left(a-1\right)\left(a+2\right)\left(a-2\right)+5a\left(a+1\right)\left(a-1\right)\)
Vì : \(a\left(a+1\right)\) là tích của 2 số thực liên tiếp nên chia hết cho 3
\(a\left(a+1\right)\left(a-1\right)\)là tích của 3 số thực liên tiếp nên chia hết cho 3
\(a\left(a+1\right)\left(a-1\right)\left(a+2\right)\left(a-2\right)\)là tích của 5 số thực liên tiếp nên chia hết cho 5
Mà (2,3,5) = 1 nên \(a\left(a+1\right)\left(a-1\right)\left(a+2\right)\left(a-2\right)\)chia hết cho 2.3.5=30
Suy ra \(a^5-a\) chia hết cho 30
Cmtt ta được \(b^5-b\) và \(c^5-c\) chia hết cho 30
Suy ra \(a^5+b^5+c^5-a-b-c\) chia hết cho 30 hay
\(a^5+b^5+c^5\) chia hết cho 30 khi a+b+c = 0
Ta xét: (a^5 - a) + (b^5 - b) + (c^5 - c)
Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 2, 3, 5 và 5a(a - 1)(a + 1) chia hết cho 5 và 2, 3 hay chia hết cho 2*3*5=30
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 30.
=> a^5 - a chia hết cho 30
=> (a^5 -a) + (b^5 -b) + (c^5 -c) = (a^5+b^5+c^5) -(a+b+c) chia hết cho 30 (*)
Do (a+b+c) chia hết cho 30
(*) => (a^5+b^5+c^5) chia hết cho 30
Đó là câu trả lời đúng.hihi :)
Ta xét (a^5 -a) + (b^5 -b) + (c^5 -c)
Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 2, 3, 5 và 5a(a - 1)(a + 1) chia hết cho 5 và 2, 3 hay chia hết cho 2*3*5=30
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 30.
=> a^5 - a chia hết cho 30
=> (a^5 -a) + (b^5 -b) + (c^5 -c) = (a^5+b^5+c^5) -(a+b+c) chia hết cho 30 (*)
Do (a+b+c) chia hết cho 30
(*) => (a^5+b^5+c^5) chia hết cho 30
Ta thấy : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right).\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Ta có :\(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số tự nhiên liên tiếp :
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(5\)và cũng \(⋮\)\(6\)( cũng là 3 số tự nhiên liên tiếp )
\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(30\)\(\left(1\right)\)
Ta lại có : \(5\)\(⋮\)\(5\)và \(\left(a-1\right)a\left(a+1\right)\)\(⋮\)\(6\)
\(\Rightarrow5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)\(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)
Hay \(a^5-a\)\(⋮\)\(30\)
Tương tự \(b^5-b\)và \(c^5-c\)cũng chia hết cho 30
\(\Rightarrow a^5+b^5+c^5-\left(a+b+c\right)\)\(⋮\)\(30\)
Mà \(a+b+c\)\(⋮\)\(30\)
\(\Rightarrow a^5+b^5+c^5\)\(⋮\)\(30\)\(\left(đpcm\right)\)