K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

1) x + y = 2x = 10 nên x = y = 5

2) 2x + 3y = 180

hay 5x = 180 

nên x = y= 36

4 tháng 8 2019

x,y=36

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

a. Thay $x=y$ vào điều kiện ban đầu thì:
$x+x=10$

$2x=10$

$x=5$

$\Rightarrow y=x=5$

Vậy $(x,y)=(5,5)$

b. Thay $x=y$ vào điều kiện đầu:
$2x+3x=180$

$5x=180$

$x=36$

$y=x=36$

Vậy $(x,y)=(36,36)$

c. Thay $y=2x$ vào điều kiện đầu thì:

$3x+5.2x=13$

$13x=13$

$x=1$

$y=2x=2$

Vậy $(x,y)=(1,2)$

 

a) Ta có: x=y

mà x+y=10

nên \(x=y=\dfrac{10}{2}=5\)

b) Ta có: \(\left\{{}\begin{matrix}2x+3y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+3y=180\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=180\\x=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=36\\x=36\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+10x=13\\y=2x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

1: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x-y}{7-13}=\dfrac{42}{-6}=-7\)

=>x=-48; y=-91

2: x/y=3/4

=>4x=3y

=>4x-3y=0

mà 2x+y=10

nên x=3 và y=4

3: =>7x-3y=0 và x-y=-24

=>x=18 và y=42

4: =>7x-5y=0 và x+y=24

=>x=10 và y=14

12 tháng 6 2021

a. \(A+B=x^2-2x-y^2+3y-1-2x^2+3y^2-5x+y+3\)

\(=\left(x^2-2x^2\right)-\left(2x+5x\right)+\left(3y^2-y^2\right)+\left(3y+y\right)+\left(3-1\right)\)

\(=2y^2+4y-x^2-7x+2\)

Thay `x = 2` và `y = -1` vào `A + B` ta được:

\(2.\left(-1\right)^2+4.\left(-1\right)-2^2-7.2+2=-18\)

b. \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5x+y+3\right)\)

\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5x-y-3\)

\(=\left(x^2+2x^2\right)+\left(5x-2x\right)-\left(y^2+3y^2\right)+\left(3y-y\right)-\left(1+3\right)\)

\(=3x^2+3x-4y^2+2y-4\)

Thay `x = -2` và `y = 1` vào `A - B` ta được:

\(3.\left(-2\right)^2+3.\left(-2\right)-4.1^2+2.1^2-4=0\)

23 tháng 4 2020

khoong biet

a: \(A=5\cdot2\cdot\left(-3\right)-10+3\cdot\left(-3\right)=-30-10-9=-49\)

 b: \(B=8\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-2\cdot1-10\)

=8+1-2-10

=-3

30 tháng 3 2022

a: A=5⋅2⋅(−3)−10+3⋅(−3)=−30−10−9=−49

 b: B=8⋅1⋅(−1)2−1⋅(−1)−2⋅1−10

=8+1-2-10

=-3

27 tháng 7 2023

1) \(x+y=10\) mà \(x=y\) nên: \(x=y=\dfrac{10}{2}=5\)

2) \(2x+3y=180\) mà \(x=y\)

Ta có: \(2y+3y=180\Rightarrow5y=180\Rightarrow y=180:5=36\)

Vậy \(x=y=36\)

3) \(x+y=180\) mà \(x=y\) nên: \(x=y=\dfrac{180}{2}=90\)

4) \(3x+5y=13\) mà \(y=2x\) ta có:

\(3x+5\cdot2x=13\Rightarrow13x=13\Rightarrow x=1\)

\(y=2x=2\cdot1=2\)

Các câu còn lại bạn làm tương tự

a: \(N=\left(2x-3y\right)\left(2x+3y\right)=\left(2x\right)^2-\left(3y\right)^2\)

\(=4x^2-9y^2\)

Thay x=1/2 và y=1/3 vào N, ta được:

\(N=4\cdot\left(\dfrac{1}{2}\right)^2-9\left(\dfrac{1}{3}\right)^2\)

\(=4\cdot\dfrac{1}{4}-9\cdot\dfrac{1}{9}\)

=1-1

=0

b: \(N=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=\left(2x\right)^3-y^3=8x^3-y^3\)

Khi x=1 và y=3 thì \(N=8\cdot1^3-3^3=8-27=-19\)

a)Ta có: x+y = 10

hay x+x = 10 ( vì x=y)

       2x = 10

         x = 10 : 2

         x = 5

 b) Ta có: 2x + 3y = 180

hay 2x + 3x = 180 ( vì x = y)

5x = 180

 x= 180 : 5

x = 36

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:
a. Thay $y=x+1$ vào điều kiện ban đầu có:

$3x+5(x+1)=13$
$8x+5=13$

$8x=8$

$x=1$

$y=x+1=2$
b. Thay $x=y+5$ vô điều kiện đầu thì:

$2(y+5)-3y=4$

$-y+10=4$

$-y=-6$

$y=6$

$x=6+5=11$

c. Thay $y=x-2$ vô điều kiện đầu thì:

$-x+5(x-2)=-6$

$4x-10=-6$

$4x=10+(-6)=4$

$x=1$

$y=x-2=1-2=-1$

a) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\x+1=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\3x-3y=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=16\\x+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x=y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x-2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=-6\\x=y+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=11\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}-x+5y=-6\\y=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x+5y=-6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-4\\y=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=y+2=-1+2=1\end{matrix}\right.\)