A = x2 - 2xy + 6y2 - 12x + 12y + 5y2 - 10 y + 5 + 4
1 tick cho người đúng nhất !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x2−2xy+6y2−12x+2y+45A=x2−2xy+6y2−12x+2y+45
=(x2−2xy+y2−12x+12y+36)+(5y2−10y+5)+4=(x2−2xy+y2−12x+12y+36)+(5y2−10y+5)+4
=[(x−y)2−12(x+y)+62]+5(y2−2y+1)+4=[(x−y)2−12(x+y)+62]+5(y2−2y+1)+4
=(x−y+6)2+5(y−1)2+4=(x−y+6)2+5(y−1)2+4
Ta có: (x−y+6)2≥0∀x,y(x−y+6)2≥0∀x,y
5(y−1)2≥0∀y5(y−1)2≥0∀y
⇒(x−y+6)2+5(y−1)2+4≥4∀x,y⇒(x−y+6)2+5(y−1)2+4≥4∀x,y
Dấu "=" xảy ra ⇔x=7,y=1⇔x=7,y=1
Vậy AMIN=4⇔x=7,y=1
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(A=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5+4\)
\(A=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y^2-2y+1\right)+4\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Do : \(\left(x-y-6\right)^2\text{≥}0\) ∀\(xy\) ; \(5\left(y-1\right)^2\text{≥}0\text{∀}y\)
⇒ \(\left(x-y-6\right)^2+5\left(y-1\right)^2\text{ ≥}0\)
⇔ \(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\text{≥}4\)
⇒ \(A_{Min}=4."="\text{⇔}x=7;y=1\)
https://olm.vn/thanhvien/chibiverycute con lồn này bố láo òm
a: \(x^2+3y^2-4x+6y+7=0\)
\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)
\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)
a: Ta có: \(A=x^2-2xy+5y^2+4y+51\)
\(=x^2-2xy+y^2+4y^2+4y+1+50\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)
a) \(A=x^2-2xy+5y^2+4y+51=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+50=\left(x-y\right)^2+\left(2y+1\right)^2+50\ge50\)
\(minA=50\Leftrightarrow x=y=-\dfrac{1}{2}\)
c) \(C=\dfrac{9}{-2x^2+4x-7}=\dfrac{9}{-2\left(x^2-2x+1\right)-5}=\dfrac{9}{-2\left(x-1\right)^2-5}\ge\dfrac{9}{-5}=-\dfrac{9}{5}\)
\(minC=-\dfrac{9}{5}\Leftrightarrow x=1\)
d) \(10x^2+4y^2-4xy+8x-4y+20=\left[4y^2-4y\left(x+1\right)+\left(x+1\right)^2\right]+\left(9x^2+6x+1\right)+18=\left(2y-x-1\right)^2+\left(3x+1\right)^2+18\ge18\)
\(minD=18\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
e) \(E=9x^2+2y^2+6xy-6x-8y+10=\left[9x^2+6x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-6x+9\right)=\left(3x+y-1\right)^2+\left(y-3\right)^2\ge0\)
\(minE=0\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=3\end{matrix}\right.\)
\(P=\dfrac{x^2-6xy+6y^2}{x^2-2xy+y^2}=\dfrac{-3\left(x^2-2xy+y^2\right)+4x^2-12xy+9y^2}{x^2-2xy+y^2}\)
\(=-3+\left(\dfrac{2x-3y}{x-y}\right)^2\ge-3\)
\(P_{min}=-3\) khi \(2x=3y\)
Đáp án C
G T ⇔ x 2 + y − 3 x + y 2 − 4 y + 4 = 0 y 2 + x − 4 y + x 2 − 3 x + 4 = 0
có nghiệm ⇔ Δ x ≥ 0 Δ y ≥ 0 ⇔ 0 ≤ x ≤ 4 3 1 ≤ y ≤ 7 3
Và:
x y = 3 x + 4 y − x 2 − y 2 − 4 ⇒ P = 3 x 3 + 18 x 2 + 45 x − 8 ⏟ f x + − 3 y 3 + 3 y 2 + 8 y ⏟ g y
Xét hàm số f x = 3 x 3 + 18 x 2 + 45 x − 8 trên 0 ; 4 3 ⇒ max 0 ; 4 3 f x = f 4 3 = 820 9
Xét hàm số g x = − 3 y 3 + 3 y 2 + 8 y trên 1 ; 7 3 ⇒ max 1 ; 7 3 g x = f 4 3 = 80 9
Vật P ≤ max 0 ; 4 3 f x + max 1 ; 7 3 g x = 100
Dấu “=” xảy ra khi x = y = 4 3
Đề là j z
Tra loi
De bai lak j v bn?
Ghi de bai ra nha