Chứng minh rằng từ tỉ lệ thức ab=cdab=cd (với b + d ≠ 0) ta suy ra được ab=a+cb+d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai ngữ pháp tiếng anh rồi. Khi mệnh đề If nằm sau main clause thì không có dấu phẩy .......
Ta có: \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\) ad = cb
Ta có: ab + cd = bc + cd
(a + c)d = (b + d)c
\(\Rightarrow\) a + \(\frac{c}{b}\) + d = \(\frac{c}{d}\)
Mà \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\) \(\frac{a}{b}\) = a + \(\frac{c}{b}\) + d
Giả sử tất cả các tỷ lệ thức đều có nghĩa.
Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Và suy ra: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
Và Từ: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)