2 cách nhé, một cách cx đc
cho a/b=c/d chung minh (a+b)^2019/(c+d)2019=a^2019+b^2019/c^2019+d^2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
* Từ \(\frac{a}{b}=\frac{c}{d}\text{ }\Rightarrow\text{ }\frac{a}{c}=\frac{b}{d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\text{ ( * ) }\)
* Từ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{\left(a-b\right)^{2019}}{\left(c-d\right)^{2019}}\left(\text{**}\right)\)
* Từ \(\left(\text{*}\right),\left(\text{**}\right)\Rightarrow\text{ ĐPCM}\)
- Nếu \(a=c=0\Rightarrow\left(\frac{a-b}{c-d}\right)^{2019}=\left(\frac{b}{d}\right)^{2019}=\frac{b^{2019}}{d^{2019}}\)
\(\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}=\frac{-b^{2019}}{-d^{2019}}=\frac{b^{2019}}{d^{2019}}\Rightarrow\left(\frac{a-b}{c-d}\right)^{2019}=\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}\)
- Nếu \(a;c\ne0\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{2a^{2019}}{2c^{2019}}=\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\left(\frac{a-c}{b-d}\right)^{2019}=\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}\)
Này Nguyễn Việt Lâm, mk thấy cái trường hợp a;c\(\ne\)0 nó cứ làm sao sao ấy.Bn thử kiểm tra lại xem
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\frac{a^{2019}+c^{2019}}{b^{2019}+d^{2019}}=\frac{\left(bk\right)^{2019}+\left(dk\right)^{2019}}{b^{2019}+d^{2019}}=\frac{b^{2019}.k^{2019}+d^{2019}.k^{2019}}{b^{2019}+d^{2019}}=\frac{k^{2019}.\left(b^{2019}+d^{2019}\right)}{b^{2019}+d^{2019}}=k^{2019}\)(1)
\(\frac{\left(a+c\right)^{2019}}{\left(b+d\right)^{2019}}=\frac{\left(bk+dk\right)^{2019}}{\left(b+d\right)^{2019}}=\frac{[k.\left(b+d\right)]^{2019}}{\left(b+d\right)^{2019}}=\frac{k^{2019}.\left(b+d\right)^{2019}}{\left(b+d\right)^{2019}}=k^{2019}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a^{2019}+c^{2019}}{b^{2019}+d^{2019}}=\frac{\left(a+c\right)^{2019}}{\left(b+d\right)^{2019}}\)
Mình viết sai đề đó nha
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\Leftrightarrow c\left(a+b+c\right)\left(a+b\right)=-ab\left(a+b\right)\)
\(\Leftrightarrow\left(ac+bc+c^2\right)\left(a+b\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> a=-b hoặc b=-c hoặc c=-a
không mất tính tổng quát ,giả sử a=-b, ta có:
\(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{-b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\left(1\right)\)
\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\left(2\right)\)
Từ (1) và (2) => đpcm
Tương tự với 2 trường hợp còn lại ta cũng có đpcm
Lời giải:
\(a^3+b^3=c^3+d^3\)
$\Leftrightarrow (a+b)^3-3ab(a+b)=(c+d)^3-3cd(c+d)$
Mà $a+b=c+d$ nên $ab(a+b)=cd(c+d)$
Đến đây ta xét 2TH:
TH $a+b=c+d=0$ thì $a^{2019}+b^{2019}=c^{2019}+d^{2019}=0$ (đpcm)
TH $a+b=c+d\neq 0$ thì $ab=cd\Leftrightarrow \frac{a}{d}=\frac{c}{b}$
Đặt $\frac{a}{d}=\frac{c}{b}=t\Rightarrow a=dt; c=bt$
Khi đó:
$a+b=c+d$
$\Leftrightarrow dt+b=bt+d\Leftrightarrow (t-1)(d-b)=0$
Nếu $t-1=0\Rightarrow a=d; c=b$
$\Rightarrow a^{2019}=d^{2019}; b^{2019}=c^{2019}$
$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)
Nếu $d-b=0\Leftrightarrow b=d\Rightarrow a=c$
$\Rightarrow a^{2019}+b^{2019}=c^{2019}+d^{2019}$ (đpcm)
Vậy..........
#)Giải :
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\left(1\right)\)
Lại có : \(\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\left(\frac{a}{c}\right)^{2019}=\left(\frac{b}{d}\right)^{2019}=\left(\frac{a+b}{c+d}\right)^{2019}=\frac{\left(a+b\right)^{2019}}{\left(c+d\right)^{2019}}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{\left(a+b\right)^{2019}}{\left(c+d\right)^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\left(đpcm\right)\)